Eduardo C Araujo, Cláudia T Codeço, Sandro Loch, Luã B Vacaro, Laís Picinini Freitas, Raquel M Lana, Leonardo S Bastos, Iasmim F de Almeida, Fernanda Valente, Luiz Max Carvalho, Flávio C Coelho
{"title":"大规模流行病学建模:扫描巴西蚊媒疾病的时空模式。","authors":"Eduardo C Araujo, Cláudia T Codeço, Sandro Loch, Luã B Vacaro, Laís Picinini Freitas, Raquel M Lana, Leonardo S Bastos, Iasmim F de Almeida, Fernanda Valente, Luiz Max Carvalho, Flávio C Coelho","doi":"10.1098/rsos.241261","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of climate on mosquito-borne diseases like dengue and chikungunya is well established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the susceptible-infectious-recovered transmission parameters from incidence data in all 5570 municipalities in Brazil over 14 years (2010-2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset characterizing all dengue and chikungunya epidemics that have taken place in this period in Brazil. The analysis reveals new insights into the climate-epidemic nexus: we identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers the possibility of exploring the main characteristics of dengue and chikungunya epidemics and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the El Niño-Southern Oscillation index.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 5","pages":"241261"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil.\",\"authors\":\"Eduardo C Araujo, Cláudia T Codeço, Sandro Loch, Luã B Vacaro, Laís Picinini Freitas, Raquel M Lana, Leonardo S Bastos, Iasmim F de Almeida, Fernanda Valente, Luiz Max Carvalho, Flávio C Coelho\",\"doi\":\"10.1098/rsos.241261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The influence of climate on mosquito-borne diseases like dengue and chikungunya is well established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the susceptible-infectious-recovered transmission parameters from incidence data in all 5570 municipalities in Brazil over 14 years (2010-2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset characterizing all dengue and chikungunya epidemics that have taken place in this period in Brazil. The analysis reveals new insights into the climate-epidemic nexus: we identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers the possibility of exploring the main characteristics of dengue and chikungunya epidemics and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the El Niño-Southern Oscillation index.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 5\",\"pages\":\"241261\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.241261\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241261","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil.
The influence of climate on mosquito-borne diseases like dengue and chikungunya is well established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the susceptible-infectious-recovered transmission parameters from incidence data in all 5570 municipalities in Brazil over 14 years (2010-2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset characterizing all dengue and chikungunya epidemics that have taken place in this period in Brazil. The analysis reveals new insights into the climate-epidemic nexus: we identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers the possibility of exploring the main characteristics of dengue and chikungunya epidemics and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the El Niño-Southern Oscillation index.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.