利用健康指数和人工智能驱动的预测性维护提高三相异步电动机的可靠性。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-05-28 eCollection Date: 2025-05-01 DOI:10.1098/rsos.241946
Felipe Lima Aires, Gabriel Dias Galeno, Fernando Nunes Belchior, Antonio Melo Oliveira, Julian David Hunt
{"title":"利用健康指数和人工智能驱动的预测性维护提高三相异步电动机的可靠性。","authors":"Felipe Lima Aires, Gabriel Dias Galeno, Fernando Nunes Belchior, Antonio Melo Oliveira, Julian David Hunt","doi":"10.1098/rsos.241946","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this work is to assist in the maintenance of three-phase induction motors by creating a health index for this equipment. The proposed approach is based on power quality concepts, the creation of an algebraic algorithm to determine the health index and the use of artificial intelligence algorithms for modelling time series, such as Autoregressive Integrated Moving Average and Facebook Prophet, to predict the future health of the motor based on its historical data. The use of historical data makes it possible to anticipate potential failures and guide predictive maintenance strategies, helping to reduce costs and minimize unplanned downtime. The study examines various causes of failure in three-phase induction motors, analysing some of the most recurrent failures, their implications and the resulting impacts on the performance of the three-phase induction motor.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 5","pages":"241946"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115838/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing three-phase induction motor reliability with health index and artificial intelligence-driven predictive maintenance.\",\"authors\":\"Felipe Lima Aires, Gabriel Dias Galeno, Fernando Nunes Belchior, Antonio Melo Oliveira, Julian David Hunt\",\"doi\":\"10.1098/rsos.241946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this work is to assist in the maintenance of three-phase induction motors by creating a health index for this equipment. The proposed approach is based on power quality concepts, the creation of an algebraic algorithm to determine the health index and the use of artificial intelligence algorithms for modelling time series, such as Autoregressive Integrated Moving Average and Facebook Prophet, to predict the future health of the motor based on its historical data. The use of historical data makes it possible to anticipate potential failures and guide predictive maintenance strategies, helping to reduce costs and minimize unplanned downtime. The study examines various causes of failure in three-phase induction motors, analysing some of the most recurrent failures, their implications and the resulting impacts on the performance of the three-phase induction motor.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 5\",\"pages\":\"241946\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.241946\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241946","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是通过创建三相感应电动机的健康指数来帮助维护三相感应电动机。提出的方法基于电能质量概念,创建代数算法来确定健康指数,并使用人工智能算法来建模时间序列,例如自回归综合移动平均和Facebook先知,以根据其历史数据预测电机的未来健康状况。使用历史数据可以预测潜在的故障并指导预测性维护策略,从而帮助降低成本并最大限度地减少计划外停机时间。本研究考察了三相感应电动机故障的各种原因,分析了一些最常见的故障,它们的含义以及对三相感应电动机性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing three-phase induction motor reliability with health index and artificial intelligence-driven predictive maintenance.

The aim of this work is to assist in the maintenance of three-phase induction motors by creating a health index for this equipment. The proposed approach is based on power quality concepts, the creation of an algebraic algorithm to determine the health index and the use of artificial intelligence algorithms for modelling time series, such as Autoregressive Integrated Moving Average and Facebook Prophet, to predict the future health of the motor based on its historical data. The use of historical data makes it possible to anticipate potential failures and guide predictive maintenance strategies, helping to reduce costs and minimize unplanned downtime. The study examines various causes of failure in three-phase induction motors, analysing some of the most recurrent failures, their implications and the resulting impacts on the performance of the three-phase induction motor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信