{"title":"AMD-FV:深度面验证自适应边际损失和双路径网络+。","authors":"Zeeshan Ahmed Khan, Waqar Ahmed, Panos Liatsis","doi":"10.1371/journal.pone.0324485","DOIUrl":null,"url":null,"abstract":"<p><p>Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0324485"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMD-FV: Adaptive margin loss and dual path network+ for deep face verification.\",\"authors\":\"Zeeshan Ahmed Khan, Waqar Ahmed, Panos Liatsis\",\"doi\":\"10.1371/journal.pone.0324485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0324485\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0324485\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324485","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
AMD-FV: Adaptive margin loss and dual path network+ for deep face verification.
Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage