AMD-FV:深度面验证自适应边际损失和双路径网络+。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-05-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0324485
Zeeshan Ahmed Khan, Waqar Ahmed, Panos Liatsis
{"title":"AMD-FV:深度面验证自适应边际损失和双路径网络+。","authors":"Zeeshan Ahmed Khan, Waqar Ahmed, Panos Liatsis","doi":"10.1371/journal.pone.0324485","DOIUrl":null,"url":null,"abstract":"<p><p>Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0324485"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMD-FV: Adaptive margin loss and dual path network+ for deep face verification.\",\"authors\":\"Zeeshan Ahmed Khan, Waqar Ahmed, Panos Liatsis\",\"doi\":\"10.1371/journal.pone.0324485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0324485\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0324485\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324485","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

面部验证在各种应用中都很重要,例如,访问控制、监视和身份识别。现有方法经常面临数据不平衡和人工超参数调优的挑战。为了解决这个问题,我们提出了深度人脸验证的自适应边际损失和双路径网络+ (AMD-FV)。介绍了两种创新,即自适应边际损失(AML)和双路径网络+ (DPN+)。AML旨在自动选择大保证金损失函数中的保证金和规模超参数,从而消除手动调优的需要。输入的不相似性信息用于估计边际,而scale参数使用类的数量和AML的范围来计算。接下来,DPN+通过使用一系列3x3卷积、批处理归一化和ReLU激活重新设计第一个块来增强原始的双路径网络,利用跨层的共享连接,从而提高空间分辨率和计算成本效率,同时最大限度地利用判别特征。我们在五个不同的人脸验证数据集(LFW、megface、IJB-B、CALFW和CPLFW)上进行了综合实验,以证明所提出方法的有效性。结果表明,AMD-FV优于目前最先进的方法,在LFW上实现了99.75%的验证准确率,与VGGFace2相比,在ikb - b上的真实接受率提高了6%,错误接受率为0.001,在megface上获得了92.16%的Rank-1识别分数,比CosFace模型高出9.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMD-FV: Adaptive margin loss and dual path network+ for deep face verification.

Face verification is important in a variety of applications, for instance, access control, surveillance, and identification. Existing methods often struggle with the challenges of dataset imbalance and manual hyperparameter tuning. To address this, we propose the Adaptive Margin Loss and Dual Path Network+ (AMD-FV) for deep face verification. Two innovations are introduced, namely, Adaptive Margin Loss (AML) and Dual Path Network+ (DPN+). AML aims at automating the selection of margin and scale hyperparameters in large margin loss functions, thus, eliminating the need for manual tuning. Input dissimilarity information is used to estimate the margin, while the scale parameter is computed using the number of classes and AML's range. Next, DPN+ enhances the original Dual Path Network by redesigning the first block with a series of 3x3 convolutions, batch normalization, and ReLU activations, leveraging shared connections across layers, leading to increases in spatial resolution and computational cost efficiency, while maximizing the use of discriminative features. We present comprehensive experiments on five diverse face verification datasets (LFW, Megaface, IJB-B, CALFW, and CPLFW) to demonstrate the effectiveness of the proposed approach. The results show that AMD-FV outperforms state-of-the-art methods, achieving a verification accuracy of 99.75% on LFW, improving the True Acceptance Rate by 6% on IJB-B at a False Acceptance Rate of 0.001, compared to VGGFace2, and attaining a Rank-1 identification score of 92.16% on Megaface, surpassing the CosFace model by 9.44%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信