多功能核酸酶Nuc a在地衣芽孢杆菌2709中的分泌表达。

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Huimin Guo, Kefen Wang, Tongtong Zhang, Honglei Fang, Wei Hui, Huitu Zhang
{"title":"多功能核酸酶Nuc a在地衣芽孢杆菌2709中的分泌表达。","authors":"Huimin Guo, Kefen Wang, Tongtong Zhang, Honglei Fang, Wei Hui, Huitu Zhang","doi":"10.2323/jgam.2025.05.001","DOIUrl":null,"url":null,"abstract":"<p><p>Serratia nuclease Nuc A is a non-specific nucleotide hydrolase that has been widely used in large-scale protein purification or eliminating nucleic acid contamination from purified proteins. To enhance the enzyme production, the Serratia nuclease gene was synthesized and expressed in Bacillus licheniformis 2709, a robust strain capable of secreting native and heterologous proteins selectively or non-selectively. To further increase the secretory expression level of the enzyme, different strong promoters and signal peptides were fused with the mature Nuc A-encoding gene at various genetic loci. The highest expression level of Nuc A was observed under the control of regulatory elements P<sub>aprE</sub>, which occur naturally in B. licheniformis 2709 for the alkaline protease (AprE) expression. Through maximizing the number of copies of P<sub>aprE-nucA</sub> expression cassette at different integration sites, the yield of nuclease Nuc A reached approximately 31954 U/mL after 60 hours of cultivation in shake flasks. The specific activity of the recombinant nuclease reached 1.58×107 U/mg, which is about 9 times higher than that expressed in Escherichia coli strain. Additionally, the recombinant Nuc A exhibited high catalytic activities in the pH range of 7-10. Furthermore, it was resistant to 0.2% SDS, 1.0 mM PMSF, and 0.4% Triton X-100. After 8 M Urea treatment, residual activity is measured. The high expression levels and positive characteristics of recombinant Nuc A provide an effective solution for large-scale production and industrial application of the nuclease.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secretory Expression of a Multifunctional Nuclease Nuc A in Bacillus licheniformis 2709.\",\"authors\":\"Huimin Guo, Kefen Wang, Tongtong Zhang, Honglei Fang, Wei Hui, Huitu Zhang\",\"doi\":\"10.2323/jgam.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serratia nuclease Nuc A is a non-specific nucleotide hydrolase that has been widely used in large-scale protein purification or eliminating nucleic acid contamination from purified proteins. To enhance the enzyme production, the Serratia nuclease gene was synthesized and expressed in Bacillus licheniformis 2709, a robust strain capable of secreting native and heterologous proteins selectively or non-selectively. To further increase the secretory expression level of the enzyme, different strong promoters and signal peptides were fused with the mature Nuc A-encoding gene at various genetic loci. The highest expression level of Nuc A was observed under the control of regulatory elements P<sub>aprE</sub>, which occur naturally in B. licheniformis 2709 for the alkaline protease (AprE) expression. Through maximizing the number of copies of P<sub>aprE-nucA</sub> expression cassette at different integration sites, the yield of nuclease Nuc A reached approximately 31954 U/mL after 60 hours of cultivation in shake flasks. The specific activity of the recombinant nuclease reached 1.58×107 U/mg, which is about 9 times higher than that expressed in Escherichia coli strain. Additionally, the recombinant Nuc A exhibited high catalytic activities in the pH range of 7-10. Furthermore, it was resistant to 0.2% SDS, 1.0 mM PMSF, and 0.4% Triton X-100. After 8 M Urea treatment, residual activity is measured. The high expression levels and positive characteristics of recombinant Nuc A provide an effective solution for large-scale production and industrial application of the nuclease.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2025.05.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2025.05.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

沙雷氏菌核酸酶Nuc A是一种非特异性核苷酸水解酶,广泛用于大规模蛋白质纯化或消除纯化蛋白的核酸污染。为了提高酶的产量,我们在地衣芽孢杆菌2709中合成并表达了沙雷菌核酸酶基因,这是一种能够选择性或非选择性分泌天然和异源蛋白的健壮菌株。为了进一步提高该酶的分泌表达水平,在不同的遗传位点上将不同的强启动子和信号肽与成熟的Nuc a编码基因融合。Nuc A在地衣芽孢杆菌2709中碱性蛋白酶(AprE)的调控元件PaprE的调控下表达量最高。在摇瓶中培养60小时后,通过最大化不同整合位点的PaprE-nucA表达盒的拷贝数,核酸酶Nuc A的产量达到约31954 U/mL。重组核酸酶的比活性达到1.58×107 U/mg,比大肠杆菌表达的核酸酶高约9倍。重组Nuc A在7 ~ 10的pH范围内表现出较高的催化活性。此外,它对0.2% SDS, 1.0 mM PMSF和0.4% Triton X-100耐药。8 M尿素处理后,测定剩余活度。重组Nuc A的高表达水平和阳性特性为该核酸酶的大规模生产和工业应用提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secretory Expression of a Multifunctional Nuclease Nuc A in Bacillus licheniformis 2709.

Serratia nuclease Nuc A is a non-specific nucleotide hydrolase that has been widely used in large-scale protein purification or eliminating nucleic acid contamination from purified proteins. To enhance the enzyme production, the Serratia nuclease gene was synthesized and expressed in Bacillus licheniformis 2709, a robust strain capable of secreting native and heterologous proteins selectively or non-selectively. To further increase the secretory expression level of the enzyme, different strong promoters and signal peptides were fused with the mature Nuc A-encoding gene at various genetic loci. The highest expression level of Nuc A was observed under the control of regulatory elements PaprE, which occur naturally in B. licheniformis 2709 for the alkaline protease (AprE) expression. Through maximizing the number of copies of PaprE-nucA expression cassette at different integration sites, the yield of nuclease Nuc A reached approximately 31954 U/mL after 60 hours of cultivation in shake flasks. The specific activity of the recombinant nuclease reached 1.58×107 U/mg, which is about 9 times higher than that expressed in Escherichia coli strain. Additionally, the recombinant Nuc A exhibited high catalytic activities in the pH range of 7-10. Furthermore, it was resistant to 0.2% SDS, 1.0 mM PMSF, and 0.4% Triton X-100. After 8 M Urea treatment, residual activity is measured. The high expression levels and positive characteristics of recombinant Nuc A provide an effective solution for large-scale production and industrial application of the nuclease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信