mof衍生的Pt-ZnO纳米管:面向高灵敏度和高选择性的先进化学传感器。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ning Lian, Jiahang Huo, Wei Liu, Zhiheng Zhang, Xin Chen, Yuqing Du, Xinshou Wang, Jian Song, Gang Cheng
{"title":"mof衍生的Pt-ZnO纳米管:面向高灵敏度和高选择性的先进化学传感器。","authors":"Ning Lian, Jiahang Huo, Wei Liu, Zhiheng Zhang, Xin Chen, Yuqing Du, Xinshou Wang, Jian Song, Gang Cheng","doi":"10.1088/1361-6528/adddc6","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of volatile organic compounds (VOCs), particularly acetone, is critical for applications in environmental monitoring and medical diagnostics, including diabetes detection. Conventional metal oxide semiconductor sensors face challenges such as poor selectivity, high operating temperatures, and limited stability. This study addresses these limitations by developing Pt-doped ZnO nanotubes (Pt-ZnO NTs) using a coaxial electrospinning and<i>in-situ</i>growth method. The process effectively incorporates ZIF-8-derived hollow ZnO structures and uniformly distributed Pt nanoparticles to enhance gas sensing performance. Key findings reveal that the 1% Pt-ZnO NTs sensor exhibits exceptional acetone sensitivity (<i>R</i><sub>a</sub>/<i>R</i><sub>g</sub>= 48.2 for 10 ppm), broad detection range (81.2 ppb-50 ppm), reduced operating temperature (240 °C), and robust selectivity against interfering gases. Advanced characterization and theoretical density functional theory analysis show that Pt doping increases oxygen vacancy concentration, enhances electron transport, and reduces the material's band gap, contributing to superior sensing capabilities. Additionally, the sensor demonstrates excellent stability, repeatability, and practical applicability in distinguishing diabetic and healthy exhaled breath samples. This research introduces a novel gas sensing platform that integrates metal-organic framework-derived structures and noble metal catalysts, offering significant advancements in sensitivity, selectivity, and reliability for VOC detection.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-derived Pt-ZnO nanotubes: toward advanced chemical sensors with high sensitivity and selectivity.\",\"authors\":\"Ning Lian, Jiahang Huo, Wei Liu, Zhiheng Zhang, Xin Chen, Yuqing Du, Xinshou Wang, Jian Song, Gang Cheng\",\"doi\":\"10.1088/1361-6528/adddc6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of volatile organic compounds (VOCs), particularly acetone, is critical for applications in environmental monitoring and medical diagnostics, including diabetes detection. Conventional metal oxide semiconductor sensors face challenges such as poor selectivity, high operating temperatures, and limited stability. This study addresses these limitations by developing Pt-doped ZnO nanotubes (Pt-ZnO NTs) using a coaxial electrospinning and<i>in-situ</i>growth method. The process effectively incorporates ZIF-8-derived hollow ZnO structures and uniformly distributed Pt nanoparticles to enhance gas sensing performance. Key findings reveal that the 1% Pt-ZnO NTs sensor exhibits exceptional acetone sensitivity (<i>R</i><sub>a</sub>/<i>R</i><sub>g</sub>= 48.2 for 10 ppm), broad detection range (81.2 ppb-50 ppm), reduced operating temperature (240 °C), and robust selectivity against interfering gases. Advanced characterization and theoretical density functional theory analysis show that Pt doping increases oxygen vacancy concentration, enhances electron transport, and reduces the material's band gap, contributing to superior sensing capabilities. Additionally, the sensor demonstrates excellent stability, repeatability, and practical applicability in distinguishing diabetic and healthy exhaled breath samples. This research introduces a novel gas sensing platform that integrates metal-organic framework-derived structures and noble metal catalysts, offering significant advancements in sensitivity, selectivity, and reliability for VOC detection.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adddc6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adddc6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

挥发性有机化合物(VOCs)的检测,特别是丙酮的检测,对于环境监测和医疗诊断(包括糖尿病检测)中的应用至关重要。传统的金属氧化物半导体(MOS)传感器面临着选择性差、工作温度高和稳定性有限等挑战。本研究利用同轴静电纺丝和原位生长方法开发了掺杂Pt-ZnO纳米管(Pt-ZnO NTs),解决了这些限制。该工艺有效地结合了zif -8衍生的空心ZnO结构和均匀分布的Pt纳米颗粒,以提高气敏性能。主要研究结果表明,1% Pt-ZnO NTs传感器具有出色的丙酮灵敏度(Ra/Rg = 48.2, 10 ppm),宽检测范围(81.2 ppb-50 ppm),降低的工作温度(240°C),以及对干扰气体的强大选择性。先进的表征和理论密度泛函理论(DFT)分析表明,Pt掺杂增加了氧空位浓度,增强了电子传递,减小了材料的带隙,有助于提高材料的传感能力。此外,该传感器在区分糖尿病和健康呼气样本方面表现出优异的稳定性、可重复性和实用性。本研究介绍了一种新型的气体传感平台,该平台集成了金属有机框架(MOF)衍生结构和贵金属催化剂,在VOC检测的灵敏度、选择性和可靠性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOF-derived Pt-ZnO nanotubes: toward advanced chemical sensors with high sensitivity and selectivity.

The detection of volatile organic compounds (VOCs), particularly acetone, is critical for applications in environmental monitoring and medical diagnostics, including diabetes detection. Conventional metal oxide semiconductor sensors face challenges such as poor selectivity, high operating temperatures, and limited stability. This study addresses these limitations by developing Pt-doped ZnO nanotubes (Pt-ZnO NTs) using a coaxial electrospinning andin-situgrowth method. The process effectively incorporates ZIF-8-derived hollow ZnO structures and uniformly distributed Pt nanoparticles to enhance gas sensing performance. Key findings reveal that the 1% Pt-ZnO NTs sensor exhibits exceptional acetone sensitivity (Ra/Rg= 48.2 for 10 ppm), broad detection range (81.2 ppb-50 ppm), reduced operating temperature (240 °C), and robust selectivity against interfering gases. Advanced characterization and theoretical density functional theory analysis show that Pt doping increases oxygen vacancy concentration, enhances electron transport, and reduces the material's band gap, contributing to superior sensing capabilities. Additionally, the sensor demonstrates excellent stability, repeatability, and practical applicability in distinguishing diabetic and healthy exhaled breath samples. This research introduces a novel gas sensing platform that integrates metal-organic framework-derived structures and noble metal catalysts, offering significant advancements in sensitivity, selectivity, and reliability for VOC detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信