Heba A H Zaghloul, Zhengkun Xiao, Jun Tang, Ting Xiao, Jiajun Gao, Jianjun Hu, Guo-Hua Huang
{"title":"从Heliothis virescens ascovirus 3h (HvAV-3h)中提取的一种气溶素样蛋白具有免疫抑制和抗菌活性。","authors":"Heba A H Zaghloul, Zhengkun Xiao, Jun Tang, Ting Xiao, Jiajun Gao, Jianjun Hu, Guo-Hua Huang","doi":"10.1099/jgv.0.002107","DOIUrl":null,"url":null,"abstract":"<p><p>Aegerolysins are lipid-binding proteins associated with multiple functions, including membrane pore-formation, insecticidal toxicity and defence against predators. Whilst distributed over the kingdoms of the Tree of Life, ascoviruses are the only representative viruses that encode an aegerolysin-like protein. Ascoviruses are entomopathogenic and possess a large dsDNA genome. The present study aimed to functionally characterize the aegerolysin-like protein of Heliothis virescens ascovirus 3h (HvAV-3h), encoded by ORF85, and to explore its potential roles in the interaction between the ascovirus and its host. Our results demonstrate the importance of this species-specific protein to HvAV-3h replication in host cells. <i>In vivo</i>, silencing of this gene for 12-72 h significantly increased the expression of some innate immunity-associated genes, including Toll (114-fold), IMD (44.7-fold) and Hopscotch (22.9-fold). In parallel, we detected significant gradual increases in MyD88 and Relish and decreases in PIAS. Moreover, histopathological analyses of infected larval tissues indicated reduced tissue damage after 72 h of ORF85 gene silencing. The prokaryotic expression of the HvAV-3h aegerolysin, followed by feeding to third-instar <i>Spodoptera exigua</i> larvae for 24 or 48 h led to significant reductions in larval weight. Moreover, the <i>in vitro</i> treatment demonstrated a bactericidal action against <i>Lysinibacillus xylanilyticus</i>, a bacterial resident of some insect guts. Overall, our findings suggest that the protein encoded by ORF85 is associated with the pathogenicity of HvAV-3h and its ability to replicate in host cells. Additionally, aegerolysin may inhibit or kill specific bacterial species in the host microbiome during infection, potentially modulating the host immune response.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"106 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163727/pdf/","citationCount":"0","resultStr":"{\"title\":\"An aegerolysin-like protein from Heliothis virescens ascovirus 3h (HvAV-3h) shows immune suppression and antibacterial activity.\",\"authors\":\"Heba A H Zaghloul, Zhengkun Xiao, Jun Tang, Ting Xiao, Jiajun Gao, Jianjun Hu, Guo-Hua Huang\",\"doi\":\"10.1099/jgv.0.002107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aegerolysins are lipid-binding proteins associated with multiple functions, including membrane pore-formation, insecticidal toxicity and defence against predators. Whilst distributed over the kingdoms of the Tree of Life, ascoviruses are the only representative viruses that encode an aegerolysin-like protein. Ascoviruses are entomopathogenic and possess a large dsDNA genome. The present study aimed to functionally characterize the aegerolysin-like protein of Heliothis virescens ascovirus 3h (HvAV-3h), encoded by ORF85, and to explore its potential roles in the interaction between the ascovirus and its host. Our results demonstrate the importance of this species-specific protein to HvAV-3h replication in host cells. <i>In vivo</i>, silencing of this gene for 12-72 h significantly increased the expression of some innate immunity-associated genes, including Toll (114-fold), IMD (44.7-fold) and Hopscotch (22.9-fold). In parallel, we detected significant gradual increases in MyD88 and Relish and decreases in PIAS. Moreover, histopathological analyses of infected larval tissues indicated reduced tissue damage after 72 h of ORF85 gene silencing. The prokaryotic expression of the HvAV-3h aegerolysin, followed by feeding to third-instar <i>Spodoptera exigua</i> larvae for 24 or 48 h led to significant reductions in larval weight. Moreover, the <i>in vitro</i> treatment demonstrated a bactericidal action against <i>Lysinibacillus xylanilyticus</i>, a bacterial resident of some insect guts. Overall, our findings suggest that the protein encoded by ORF85 is associated with the pathogenicity of HvAV-3h and its ability to replicate in host cells. Additionally, aegerolysin may inhibit or kill specific bacterial species in the host microbiome during infection, potentially modulating the host immune response.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"106 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.002107\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
An aegerolysin-like protein from Heliothis virescens ascovirus 3h (HvAV-3h) shows immune suppression and antibacterial activity.
Aegerolysins are lipid-binding proteins associated with multiple functions, including membrane pore-formation, insecticidal toxicity and defence against predators. Whilst distributed over the kingdoms of the Tree of Life, ascoviruses are the only representative viruses that encode an aegerolysin-like protein. Ascoviruses are entomopathogenic and possess a large dsDNA genome. The present study aimed to functionally characterize the aegerolysin-like protein of Heliothis virescens ascovirus 3h (HvAV-3h), encoded by ORF85, and to explore its potential roles in the interaction between the ascovirus and its host. Our results demonstrate the importance of this species-specific protein to HvAV-3h replication in host cells. In vivo, silencing of this gene for 12-72 h significantly increased the expression of some innate immunity-associated genes, including Toll (114-fold), IMD (44.7-fold) and Hopscotch (22.9-fold). In parallel, we detected significant gradual increases in MyD88 and Relish and decreases in PIAS. Moreover, histopathological analyses of infected larval tissues indicated reduced tissue damage after 72 h of ORF85 gene silencing. The prokaryotic expression of the HvAV-3h aegerolysin, followed by feeding to third-instar Spodoptera exigua larvae for 24 or 48 h led to significant reductions in larval weight. Moreover, the in vitro treatment demonstrated a bactericidal action against Lysinibacillus xylanilyticus, a bacterial resident of some insect guts. Overall, our findings suggest that the protein encoded by ORF85 is associated with the pathogenicity of HvAV-3h and its ability to replicate in host cells. Additionally, aegerolysin may inhibit or kill specific bacterial species in the host microbiome during infection, potentially modulating the host immune response.
期刊介绍:
JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.