{"title":"血管平滑肌细胞片形成的无血清内皮细胞培养基。","authors":"Jing Yang, Xuheng Sun, Hongjing Jiang, Jiandong Li, Jierong Liang, Zhanyi Lin","doi":"10.1186/s13036-025-00522-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cell sheet technology has been identified as a promising approach for the construction of tissue-engineered vascular grafts (TEVGs). However, concerns regarding immunogenicity and ethical issues, which are raised by the use of fetal bovine serum (FBS) in traditional culture systems, limit its potential for clinical translation. Serum-free medium (SFM) has emerged as a safer and more controllable alternative, but further validation is required to determine its effectiveness and superiority in generating high-quality cell sheets.</p><p><strong>Methods: </strong>This study systematically compared cell sheets generated under SFM and 10% FBS culture conditions in terms of structure, cellular phenotype, and functional properties. The expression levels of α-SMA and SM22, markers of vascular smooth muscle cells(VSMCs), were evaluated using immunofluorescence staining, qRT-PCR, and Western blot analysis to assess cellular phenotype. Histological staining and mechanical testing were employed to compare the morphology and mechanical properties of the cell sheets, while extracellular matrix (ECM) deposition and biochemical characteristics were also analyzed.</p><p><strong>Results: </strong>Under SFM conditions, cells exhibited significantly higher α-SMA and SM22 expression levels (qRT-PCR showed a 1.8-fold and 2-fold increase, respectively; ****p < 0.0001) with clearer cytoskeletal arrangement. Cell sheets formed in SFM displayed comparable area(ns, p > 0.05), thickness(**p < 0.01), and mechanical properties to those cultured in 10% FBS, while ECM deposition was significantly enhanced (collagen content increased by approximately 40%, **p < 0.01). Furthermore, histological analysis revealed that cell sheets generated under SFM conditions were more compact and uniform, exhibiting superior structural organization.</p><p><strong>Conclusion: </strong>SFM facilitates the generation of cell sheets that exhibit structural and functional properties analogous to those cultured in FBS. Additionally, SFM promotes cellular phenotype transition and ECM deposition. Consequently, SFM provides a safer, more controllable, and clinically translatable solution for cell sheet construction.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"51"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum-free endothelial cell culture medium for vascular smooth muscle cells sheet formation.\",\"authors\":\"Jing Yang, Xuheng Sun, Hongjing Jiang, Jiandong Li, Jierong Liang, Zhanyi Lin\",\"doi\":\"10.1186/s13036-025-00522-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cell sheet technology has been identified as a promising approach for the construction of tissue-engineered vascular grafts (TEVGs). However, concerns regarding immunogenicity and ethical issues, which are raised by the use of fetal bovine serum (FBS) in traditional culture systems, limit its potential for clinical translation. Serum-free medium (SFM) has emerged as a safer and more controllable alternative, but further validation is required to determine its effectiveness and superiority in generating high-quality cell sheets.</p><p><strong>Methods: </strong>This study systematically compared cell sheets generated under SFM and 10% FBS culture conditions in terms of structure, cellular phenotype, and functional properties. The expression levels of α-SMA and SM22, markers of vascular smooth muscle cells(VSMCs), were evaluated using immunofluorescence staining, qRT-PCR, and Western blot analysis to assess cellular phenotype. Histological staining and mechanical testing were employed to compare the morphology and mechanical properties of the cell sheets, while extracellular matrix (ECM) deposition and biochemical characteristics were also analyzed.</p><p><strong>Results: </strong>Under SFM conditions, cells exhibited significantly higher α-SMA and SM22 expression levels (qRT-PCR showed a 1.8-fold and 2-fold increase, respectively; ****p < 0.0001) with clearer cytoskeletal arrangement. Cell sheets formed in SFM displayed comparable area(ns, p > 0.05), thickness(**p < 0.01), and mechanical properties to those cultured in 10% FBS, while ECM deposition was significantly enhanced (collagen content increased by approximately 40%, **p < 0.01). Furthermore, histological analysis revealed that cell sheets generated under SFM conditions were more compact and uniform, exhibiting superior structural organization.</p><p><strong>Conclusion: </strong>SFM facilitates the generation of cell sheets that exhibit structural and functional properties analogous to those cultured in FBS. Additionally, SFM promotes cellular phenotype transition and ECM deposition. Consequently, SFM provides a safer, more controllable, and clinically translatable solution for cell sheet construction.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"51\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00522-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00522-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Serum-free endothelial cell culture medium for vascular smooth muscle cells sheet formation.
Background: Cell sheet technology has been identified as a promising approach for the construction of tissue-engineered vascular grafts (TEVGs). However, concerns regarding immunogenicity and ethical issues, which are raised by the use of fetal bovine serum (FBS) in traditional culture systems, limit its potential for clinical translation. Serum-free medium (SFM) has emerged as a safer and more controllable alternative, but further validation is required to determine its effectiveness and superiority in generating high-quality cell sheets.
Methods: This study systematically compared cell sheets generated under SFM and 10% FBS culture conditions in terms of structure, cellular phenotype, and functional properties. The expression levels of α-SMA and SM22, markers of vascular smooth muscle cells(VSMCs), were evaluated using immunofluorescence staining, qRT-PCR, and Western blot analysis to assess cellular phenotype. Histological staining and mechanical testing were employed to compare the morphology and mechanical properties of the cell sheets, while extracellular matrix (ECM) deposition and biochemical characteristics were also analyzed.
Results: Under SFM conditions, cells exhibited significantly higher α-SMA and SM22 expression levels (qRT-PCR showed a 1.8-fold and 2-fold increase, respectively; ****p < 0.0001) with clearer cytoskeletal arrangement. Cell sheets formed in SFM displayed comparable area(ns, p > 0.05), thickness(**p < 0.01), and mechanical properties to those cultured in 10% FBS, while ECM deposition was significantly enhanced (collagen content increased by approximately 40%, **p < 0.01). Furthermore, histological analysis revealed that cell sheets generated under SFM conditions were more compact and uniform, exhibiting superior structural organization.
Conclusion: SFM facilitates the generation of cell sheets that exhibit structural and functional properties analogous to those cultured in FBS. Additionally, SFM promotes cellular phenotype transition and ECM deposition. Consequently, SFM provides a safer, more controllable, and clinically translatable solution for cell sheet construction.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.