{"title":"混合虚拟筛选鉴定了二吡唑羧酰胺衍生物作为具有抗结核活性的新型直接InhA抑制剂。","authors":"Auradee Punkvang , Bongkochawan Pakamwong , Naruedon Phusi , Paptawan Thongdee , Kampanart Chayajarus , Jidapa Sangswan , Kanjana Pangjit , Khomson Suttisintong , Jiraporn Leanpolchareanchai , Poonpilas Hongmanee , Pitak Santanirand , James Spencer , Adrian J. Mulholland , Sanya Sureram , Prasat Kittakoop , Pornpan Pungpo","doi":"10.1016/j.bbagen.2025.130827","DOIUrl":null,"url":null,"abstract":"<div><div>Direct inhibitors of <em>M. tuberculosis</em> enoyl-acyl carrier protein reductase (<em>M. tuberculosis</em> InhA) remain effective against variants with mutations associated with isoniazid resistance. In our previous study, structure-based virtual screening was employed to discover such inhibitors. However, most identified hits exhibited limited antimycobacterial activity, with minimum inhibitory concentration (MIC) values of >100 μg/mL. To address this challenge, we refined our virtual screening strategy by integrating ligand- and structure-based virtual screening approaches. The efficacy of this hybrid virtual screening approach was validated through biological assays measuring MIC and half-maximal inhibitory concentration (IC<sub>50</sub>) for the inhibition of <em>M. tuberculosis</em> growth and InhA activity, respectively. Among 14 identified hits, compounds <strong>3</strong> and <strong>10</strong>, classified as dipyrazole carboxamide derivatives, were validated as promising lead candidates, with MIC values of 25 and 50 μg/mL and IC<sub>50</sub> values of 10.60 ± 0.56 and 5.08 ± 0.30 μM, respectively. The relatively low hit-to‑lead conversion rate (14 %) is ascribed to our observation that nine of the identified hits, including compounds <strong>3</strong> and <strong>10</strong>, showed some level of precipitation in the MIC assay medium. Molecular dynamics simulations show that the dipyrazole carboxamide moiety in compounds <strong>3</strong> and <strong>10</strong> forms essential hydrogen bonds with nicotinamide adenine dinucleotide (oxidized form) (NAD<sup>+</sup>) in the InhA binding pocket. Notably, both compounds <strong>3</strong> and <strong>10</strong> exhibit favorable safety profiles, with no toxicity observed in Caco-2 cells at concentrations up to 100 μg/mL. Consequently, we believe that these compounds present promising starting points for further lead optimization and development of novel antitubercular agents.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 8","pages":"Article 130827"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid virtual screening identifies dipyrazole carboxamide derivatives as novel direct InhA inhibitors with antitubercular activity\",\"authors\":\"Auradee Punkvang , Bongkochawan Pakamwong , Naruedon Phusi , Paptawan Thongdee , Kampanart Chayajarus , Jidapa Sangswan , Kanjana Pangjit , Khomson Suttisintong , Jiraporn Leanpolchareanchai , Poonpilas Hongmanee , Pitak Santanirand , James Spencer , Adrian J. Mulholland , Sanya Sureram , Prasat Kittakoop , Pornpan Pungpo\",\"doi\":\"10.1016/j.bbagen.2025.130827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct inhibitors of <em>M. tuberculosis</em> enoyl-acyl carrier protein reductase (<em>M. tuberculosis</em> InhA) remain effective against variants with mutations associated with isoniazid resistance. In our previous study, structure-based virtual screening was employed to discover such inhibitors. However, most identified hits exhibited limited antimycobacterial activity, with minimum inhibitory concentration (MIC) values of >100 μg/mL. To address this challenge, we refined our virtual screening strategy by integrating ligand- and structure-based virtual screening approaches. The efficacy of this hybrid virtual screening approach was validated through biological assays measuring MIC and half-maximal inhibitory concentration (IC<sub>50</sub>) for the inhibition of <em>M. tuberculosis</em> growth and InhA activity, respectively. Among 14 identified hits, compounds <strong>3</strong> and <strong>10</strong>, classified as dipyrazole carboxamide derivatives, were validated as promising lead candidates, with MIC values of 25 and 50 μg/mL and IC<sub>50</sub> values of 10.60 ± 0.56 and 5.08 ± 0.30 μM, respectively. The relatively low hit-to‑lead conversion rate (14 %) is ascribed to our observation that nine of the identified hits, including compounds <strong>3</strong> and <strong>10</strong>, showed some level of precipitation in the MIC assay medium. Molecular dynamics simulations show that the dipyrazole carboxamide moiety in compounds <strong>3</strong> and <strong>10</strong> forms essential hydrogen bonds with nicotinamide adenine dinucleotide (oxidized form) (NAD<sup>+</sup>) in the InhA binding pocket. Notably, both compounds <strong>3</strong> and <strong>10</strong> exhibit favorable safety profiles, with no toxicity observed in Caco-2 cells at concentrations up to 100 μg/mL. Consequently, we believe that these compounds present promising starting points for further lead optimization and development of novel antitubercular agents.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 8\",\"pages\":\"Article 130827\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525000728\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000728","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hybrid virtual screening identifies dipyrazole carboxamide derivatives as novel direct InhA inhibitors with antitubercular activity
Direct inhibitors of M. tuberculosis enoyl-acyl carrier protein reductase (M. tuberculosis InhA) remain effective against variants with mutations associated with isoniazid resistance. In our previous study, structure-based virtual screening was employed to discover such inhibitors. However, most identified hits exhibited limited antimycobacterial activity, with minimum inhibitory concentration (MIC) values of >100 μg/mL. To address this challenge, we refined our virtual screening strategy by integrating ligand- and structure-based virtual screening approaches. The efficacy of this hybrid virtual screening approach was validated through biological assays measuring MIC and half-maximal inhibitory concentration (IC50) for the inhibition of M. tuberculosis growth and InhA activity, respectively. Among 14 identified hits, compounds 3 and 10, classified as dipyrazole carboxamide derivatives, were validated as promising lead candidates, with MIC values of 25 and 50 μg/mL and IC50 values of 10.60 ± 0.56 and 5.08 ± 0.30 μM, respectively. The relatively low hit-to‑lead conversion rate (14 %) is ascribed to our observation that nine of the identified hits, including compounds 3 and 10, showed some level of precipitation in the MIC assay medium. Molecular dynamics simulations show that the dipyrazole carboxamide moiety in compounds 3 and 10 forms essential hydrogen bonds with nicotinamide adenine dinucleotide (oxidized form) (NAD+) in the InhA binding pocket. Notably, both compounds 3 and 10 exhibit favorable safety profiles, with no toxicity observed in Caco-2 cells at concentrations up to 100 μg/mL. Consequently, we believe that these compounds present promising starting points for further lead optimization and development of novel antitubercular agents.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.