Benedek Batizi, Patrik Pollák, András Dancsó, Péter Keglevich, Gyula Simig, Balázs Volk, Mátyás Milen
{"title":"β-碳碱类生物碱灯盏花碱和灯盏花碱的合成研究。","authors":"Benedek Batizi, Patrik Pollák, András Dancsó, Péter Keglevich, Gyula Simig, Balázs Volk, Mátyás Milen","doi":"10.3762/bjoc.21.79","DOIUrl":null,"url":null,"abstract":"<p><p>A new total synthesis of the β-carboline alkaloid brevicarine is disclosed. The synthesis was carried out starting from an aromatic triflate key intermediate, allowing the introduction of various substituents into position 4 of β-carboline by cross-coupling reactions. Thanks to its scalability, this novel approach ensures a broad accessibility to the target compound for potential pharmacological measurements. Using detailed NMR studies, the NMR signals have been assigned for both the base and its dihydrochloride salt for further confirming their structures. A new synthesis of the related alkaloid brevicolline was also attempted from the same intermediate. However, after successful coupling of β-carboline with <i>N</i>-methylpyrrole, the trials to saturate the pyrrole ring under various conditions led to unexpected reactions: reduction of ring A of the β-carboline skeleton or trifluoroethylation of the pyrrole moiety occurred, leading to interesting and potentially useful derivatives.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"955-963"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117210/pdf/","citationCount":"0","resultStr":"{\"title\":\"Studies on the syntheses of β-carboline alkaloids brevicarine and brevicolline.\",\"authors\":\"Benedek Batizi, Patrik Pollák, András Dancsó, Péter Keglevich, Gyula Simig, Balázs Volk, Mátyás Milen\",\"doi\":\"10.3762/bjoc.21.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new total synthesis of the β-carboline alkaloid brevicarine is disclosed. The synthesis was carried out starting from an aromatic triflate key intermediate, allowing the introduction of various substituents into position 4 of β-carboline by cross-coupling reactions. Thanks to its scalability, this novel approach ensures a broad accessibility to the target compound for potential pharmacological measurements. Using detailed NMR studies, the NMR signals have been assigned for both the base and its dihydrochloride salt for further confirming their structures. A new synthesis of the related alkaloid brevicolline was also attempted from the same intermediate. However, after successful coupling of β-carboline with <i>N</i>-methylpyrrole, the trials to saturate the pyrrole ring under various conditions led to unexpected reactions: reduction of ring A of the β-carboline skeleton or trifluoroethylation of the pyrrole moiety occurred, leading to interesting and potentially useful derivatives.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"955-963\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.79\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.79","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Studies on the syntheses of β-carboline alkaloids brevicarine and brevicolline.
A new total synthesis of the β-carboline alkaloid brevicarine is disclosed. The synthesis was carried out starting from an aromatic triflate key intermediate, allowing the introduction of various substituents into position 4 of β-carboline by cross-coupling reactions. Thanks to its scalability, this novel approach ensures a broad accessibility to the target compound for potential pharmacological measurements. Using detailed NMR studies, the NMR signals have been assigned for both the base and its dihydrochloride salt for further confirming their structures. A new synthesis of the related alkaloid brevicolline was also attempted from the same intermediate. However, after successful coupling of β-carboline with N-methylpyrrole, the trials to saturate the pyrrole ring under various conditions led to unexpected reactions: reduction of ring A of the β-carboline skeleton or trifluoroethylation of the pyrrole moiety occurred, leading to interesting and potentially useful derivatives.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.