与你的数据对话:在心理学研究中引入文本嵌入相似度分析(TESA)。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Juul Vossen, Evy Kuijpers, Joeri Hofmans
{"title":"与你的数据对话:在心理学研究中引入文本嵌入相似度分析(TESA)。","authors":"Juul Vossen, Evy Kuijpers, Joeri Hofmans","doi":"10.3758/s13428-025-02698-z","DOIUrl":null,"url":null,"abstract":"<p><p>While qualitative research plays a vital role in understanding complex phenomena, it lends itself poorly to testing formal hypotheses due to its inability to fit statistical models to text data. Approaches that are traditionally used to quantify text data (e.g., content analysis) are generally time-consuming, prone to researcher bias, and neglect a substantial amount of potentially important semantic context. Although novel approaches have been proposed, these typically require large amounts of text data and tend to be inductive in nature. To enable researchers to ask hypothesis-based and open-ended questions from one's text data, the current study proposes a novel retrieval augmented generation (RAG)-based approach (called text embedding similarity analysis, TESA) that transforms a hypothesis into two specific search terms: a population (or sample) and a variable of interest. Using pretrained large language models (LLM), we extract the semantic embedding of the search terms and text data and use cosine similarity to match search terms. This allows hypothesis testing by assessing the alignment between the distribution of similarity scores for a variable of interest with the expectation for the population.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 7","pages":"179"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Talk to your data: Introducing text embedding similarity analysis (TESA) in psychological research.\",\"authors\":\"Juul Vossen, Evy Kuijpers, Joeri Hofmans\",\"doi\":\"10.3758/s13428-025-02698-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While qualitative research plays a vital role in understanding complex phenomena, it lends itself poorly to testing formal hypotheses due to its inability to fit statistical models to text data. Approaches that are traditionally used to quantify text data (e.g., content analysis) are generally time-consuming, prone to researcher bias, and neglect a substantial amount of potentially important semantic context. Although novel approaches have been proposed, these typically require large amounts of text data and tend to be inductive in nature. To enable researchers to ask hypothesis-based and open-ended questions from one's text data, the current study proposes a novel retrieval augmented generation (RAG)-based approach (called text embedding similarity analysis, TESA) that transforms a hypothesis into two specific search terms: a population (or sample) and a variable of interest. Using pretrained large language models (LLM), we extract the semantic embedding of the search terms and text data and use cosine similarity to match search terms. This allows hypothesis testing by assessing the alignment between the distribution of similarity scores for a variable of interest with the expectation for the population.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 7\",\"pages\":\"179\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02698-z\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02698-z","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然定性研究在理解复杂现象方面发挥着至关重要的作用,但由于它无法将统计模型拟合到文本数据中,因此它在测试正式假设方面表现不佳。传统上用于量化文本数据的方法(例如,内容分析)通常是耗时的,容易受到研究者偏见的影响,并且忽略了大量潜在重要的语义上下文。虽然已经提出了新的方法,但这些方法通常需要大量的文本数据,并且本质上倾向于归纳。为了使研究人员能够从文本数据中提出基于假设和开放式的问题,目前的研究提出了一种新的基于检索增强生成(RAG)的方法(称为文本嵌入相似性分析,TESA),该方法将假设转换为两个特定的搜索项:人口(或样本)和感兴趣的变量。使用预训练的大型语言模型(LLM)提取搜索词和文本数据的语义嵌入,并使用余弦相似度来匹配搜索词。这允许通过评估感兴趣变量的相似性分数分布与总体期望之间的一致性来进行假设检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Talk to your data: Introducing text embedding similarity analysis (TESA) in psychological research.

While qualitative research plays a vital role in understanding complex phenomena, it lends itself poorly to testing formal hypotheses due to its inability to fit statistical models to text data. Approaches that are traditionally used to quantify text data (e.g., content analysis) are generally time-consuming, prone to researcher bias, and neglect a substantial amount of potentially important semantic context. Although novel approaches have been proposed, these typically require large amounts of text data and tend to be inductive in nature. To enable researchers to ask hypothesis-based and open-ended questions from one's text data, the current study proposes a novel retrieval augmented generation (RAG)-based approach (called text embedding similarity analysis, TESA) that transforms a hypothesis into two specific search terms: a population (or sample) and a variable of interest. Using pretrained large language models (LLM), we extract the semantic embedding of the search terms and text data and use cosine similarity to match search terms. This allows hypothesis testing by assessing the alignment between the distribution of similarity scores for a variable of interest with the expectation for the population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信