Carolin S Escherich, Zhenhua Li, Kelly R Barnett, Yizhen Li, Megan Walker, Satoshi Yoshimura, Wenjian Yang, Xin Huang, Jiyang Yu, Wendy Stock, Elisabeth Paietta, Marina Y Konopleva, Steven M Kornblau, Elias Jabbour, Mark R Litzow, Hiroto Inaba, Ching-Hon Pui, Mignon L Loh, William E Evans, Daniel Savic, Jun J Yang
{"title":"分化依赖性EBF1活性决定CD22转录和白血病对Inotuzumab Ozogamicin敏感性","authors":"Carolin S Escherich, Zhenhua Li, Kelly R Barnett, Yizhen Li, Megan Walker, Satoshi Yoshimura, Wenjian Yang, Xin Huang, Jiyang Yu, Wendy Stock, Elisabeth Paietta, Marina Y Konopleva, Steven M Kornblau, Elias Jabbour, Mark R Litzow, Hiroto Inaba, Ching-Hon Pui, Mignon L Loh, William E Evans, Daniel Savic, Jun J Yang","doi":"10.1182/blood.2024028215","DOIUrl":null,"url":null,"abstract":"<p><p>Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with high efficacy in lymphoid malignancies. It targets the B-cell surface protein CD22, which is expressed in most B-ALL cases, albeit with variable intensity. However, factors governing CD22 expression and thus leukemia sensitivity to InO remain incompletely understood. Using multi-omic characterization of 196 human B-ALL samples, coupled with ex vivo InO sensitivity profiling, we show that early leukemia differentiation arrest at the Pre-pro-B stage is associated with resistance to InO. Screening 1,639 transcription factor genes prioritized Early B-cell Factor 1 (EBF1) as a key regulator of CD22 expression (false discovery rate=7.1×10-4). Comparing the ATAC-seq profiling results of the most InO-sensitive and -resistant cases (LC50 <10th vs. >90th percentile, n=18), the binding motif for EBF1 was strikingly enriched in regions with differential open chromatin status (P=8×10-174). CRISPR interference targeting EBF1 binding sites at the CD22 locus led to ~ 50-fold reduction in cell surface CD22 expression, and consequently ~ 22-fold increase in InO resistance in ALL cell lines. Interestingly, within BCR::ABL1 ALL, we observed intra-subtype heterogeneity linked to EBF1 transcriptional downregulation (P=1.1×10-15) and/or somatic alteration (P=0.004), which led to reduced CD22 expression (P=8.3×10-11) and ex vivo and in vivo resistance to InO. Collectively, these findings point to the direct impact of EBF1 on CD22 expression during B-cell development, which in turn contributes to inter-patient variability in InO response, even within the same subtype of B-ALL.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation-dependent EBF1 Activity Determines CD22 Transcription and Leukemia Sensitivity to Inotuzumab Ozogamicin.\",\"authors\":\"Carolin S Escherich, Zhenhua Li, Kelly R Barnett, Yizhen Li, Megan Walker, Satoshi Yoshimura, Wenjian Yang, Xin Huang, Jiyang Yu, Wendy Stock, Elisabeth Paietta, Marina Y Konopleva, Steven M Kornblau, Elias Jabbour, Mark R Litzow, Hiroto Inaba, Ching-Hon Pui, Mignon L Loh, William E Evans, Daniel Savic, Jun J Yang\",\"doi\":\"10.1182/blood.2024028215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with high efficacy in lymphoid malignancies. It targets the B-cell surface protein CD22, which is expressed in most B-ALL cases, albeit with variable intensity. However, factors governing CD22 expression and thus leukemia sensitivity to InO remain incompletely understood. Using multi-omic characterization of 196 human B-ALL samples, coupled with ex vivo InO sensitivity profiling, we show that early leukemia differentiation arrest at the Pre-pro-B stage is associated with resistance to InO. Screening 1,639 transcription factor genes prioritized Early B-cell Factor 1 (EBF1) as a key regulator of CD22 expression (false discovery rate=7.1×10-4). Comparing the ATAC-seq profiling results of the most InO-sensitive and -resistant cases (LC50 <10th vs. >90th percentile, n=18), the binding motif for EBF1 was strikingly enriched in regions with differential open chromatin status (P=8×10-174). CRISPR interference targeting EBF1 binding sites at the CD22 locus led to ~ 50-fold reduction in cell surface CD22 expression, and consequently ~ 22-fold increase in InO resistance in ALL cell lines. Interestingly, within BCR::ABL1 ALL, we observed intra-subtype heterogeneity linked to EBF1 transcriptional downregulation (P=1.1×10-15) and/or somatic alteration (P=0.004), which led to reduced CD22 expression (P=8.3×10-11) and ex vivo and in vivo resistance to InO. Collectively, these findings point to the direct impact of EBF1 on CD22 expression during B-cell development, which in turn contributes to inter-patient variability in InO response, even within the same subtype of B-ALL.</p>\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":21.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024028215\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024028215","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Differentiation-dependent EBF1 Activity Determines CD22 Transcription and Leukemia Sensitivity to Inotuzumab Ozogamicin.
Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with high efficacy in lymphoid malignancies. It targets the B-cell surface protein CD22, which is expressed in most B-ALL cases, albeit with variable intensity. However, factors governing CD22 expression and thus leukemia sensitivity to InO remain incompletely understood. Using multi-omic characterization of 196 human B-ALL samples, coupled with ex vivo InO sensitivity profiling, we show that early leukemia differentiation arrest at the Pre-pro-B stage is associated with resistance to InO. Screening 1,639 transcription factor genes prioritized Early B-cell Factor 1 (EBF1) as a key regulator of CD22 expression (false discovery rate=7.1×10-4). Comparing the ATAC-seq profiling results of the most InO-sensitive and -resistant cases (LC50 <10th vs. >90th percentile, n=18), the binding motif for EBF1 was strikingly enriched in regions with differential open chromatin status (P=8×10-174). CRISPR interference targeting EBF1 binding sites at the CD22 locus led to ~ 50-fold reduction in cell surface CD22 expression, and consequently ~ 22-fold increase in InO resistance in ALL cell lines. Interestingly, within BCR::ABL1 ALL, we observed intra-subtype heterogeneity linked to EBF1 transcriptional downregulation (P=1.1×10-15) and/or somatic alteration (P=0.004), which led to reduced CD22 expression (P=8.3×10-11) and ex vivo and in vivo resistance to InO. Collectively, these findings point to the direct impact of EBF1 on CD22 expression during B-cell development, which in turn contributes to inter-patient variability in InO response, even within the same subtype of B-ALL.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.