花青素色素沉着的黑暗面。

IF 3.6 3区 生物学 Q1 PLANT SCIENCES
Plant Biology Pub Date : 2025-05-28 DOI:10.1111/plb.70047
K. Wolff, B. Pucker
{"title":"花青素色素沉着的黑暗面。","authors":"K. Wolff,&nbsp;B. Pucker","doi":"10.1111/plb.70047","DOIUrl":null,"url":null,"abstract":"<p>Dark pigmentation can be observed in various parts of the plant, ranging from foliage to petals and berries. Here, we review the available knowledge about dark pigmentation in plants and the potential for biotechnological applications. The molecular basis of black pigmentation appears to vary among species, with anthocyanins playing a significant role, although specific anthocyanin types and their mechanisms differ. These findings suggest that the development of phenotypes is species-specific or varies between larger taxonomic groups; this is further supported by the polyphyletic nature of dark pigmentation. Additionally, several different regulatory mechanisms have been described for the occurrence of dark pigmentation. First, the repression or knockout of the competing flavone biosynthesis has been shown to lead to darker pigmentation while another mechanism is based on the activation and upregulation of the anthocyanin biosynthesis genes in the presence of MYB transcription factors. Potential ecological functions of dark pigmentation were identified as protection of the photosynthesis apparatus, camouflage against herbivores, and the attraction of pollinators. Promising industrial applications include microbial factories for the production of natural food colourants, induction of novel phenotypes for the ornamental plant industry and, lastly, increase of anthocyanins within agriculturally relevant crops. Understanding the genetic basis of dark pigment accumulation would facilitate biotechnological and agricultural applications.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":"27 6","pages":"935-947"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/plb.70047","citationCount":"0","resultStr":"{\"title\":\"Dark side of anthocyanin pigmentation\",\"authors\":\"K. Wolff,&nbsp;B. Pucker\",\"doi\":\"10.1111/plb.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dark pigmentation can be observed in various parts of the plant, ranging from foliage to petals and berries. Here, we review the available knowledge about dark pigmentation in plants and the potential for biotechnological applications. The molecular basis of black pigmentation appears to vary among species, with anthocyanins playing a significant role, although specific anthocyanin types and their mechanisms differ. These findings suggest that the development of phenotypes is species-specific or varies between larger taxonomic groups; this is further supported by the polyphyletic nature of dark pigmentation. Additionally, several different regulatory mechanisms have been described for the occurrence of dark pigmentation. First, the repression or knockout of the competing flavone biosynthesis has been shown to lead to darker pigmentation while another mechanism is based on the activation and upregulation of the anthocyanin biosynthesis genes in the presence of MYB transcription factors. Potential ecological functions of dark pigmentation were identified as protection of the photosynthesis apparatus, camouflage against herbivores, and the attraction of pollinators. Promising industrial applications include microbial factories for the production of natural food colourants, induction of novel phenotypes for the ornamental plant industry and, lastly, increase of anthocyanins within agriculturally relevant crops. Understanding the genetic basis of dark pigment accumulation would facilitate biotechnological and agricultural applications.</p>\",\"PeriodicalId\":220,\"journal\":{\"name\":\"Plant Biology\",\"volume\":\"27 6\",\"pages\":\"935-947\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/plb.70047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/plb.70047\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/plb.70047","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

深色色素沉着可以在植物的各个部分观察到,从叶子到花瓣和浆果。在这里,我们回顾了现有的知识,深色色素沉着在植物和潜在的生物技术应用。黑色色素沉着的分子基础似乎因物种而异,花青素起着重要作用,尽管具体的花青素类型及其机制不同。这些发现表明,表型的发育是种特异性的,或者在较大的分类群之间存在差异;深色色素沉着的多系性进一步支持了这一点。此外,已经描述了几种不同的深色色素沉着发生的调节机制。首先,抑制或敲除竞争的黄酮类生物合成已被证明会导致较深的色素沉着,而另一种机制是基于MYB转录因子存在下花青素生物合成基因的激活和上调。暗色素沉积的潜在生态功能包括保护光合作用装置、抵御食草动物的伪装和吸引传粉者。有前景的工业应用包括用于生产天然食用色素的微生物工厂,用于观赏植物工业的新表型诱导,以及最后,在农业相关作物中增加花青素。了解色素积累的遗传基础有助于生物技术和农业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dark side of anthocyanin pigmentation

Dark side of anthocyanin pigmentation

Dark pigmentation can be observed in various parts of the plant, ranging from foliage to petals and berries. Here, we review the available knowledge about dark pigmentation in plants and the potential for biotechnological applications. The molecular basis of black pigmentation appears to vary among species, with anthocyanins playing a significant role, although specific anthocyanin types and their mechanisms differ. These findings suggest that the development of phenotypes is species-specific or varies between larger taxonomic groups; this is further supported by the polyphyletic nature of dark pigmentation. Additionally, several different regulatory mechanisms have been described for the occurrence of dark pigmentation. First, the repression or knockout of the competing flavone biosynthesis has been shown to lead to darker pigmentation while another mechanism is based on the activation and upregulation of the anthocyanin biosynthesis genes in the presence of MYB transcription factors. Potential ecological functions of dark pigmentation were identified as protection of the photosynthesis apparatus, camouflage against herbivores, and the attraction of pollinators. Promising industrial applications include microbial factories for the production of natural food colourants, induction of novel phenotypes for the ornamental plant industry and, lastly, increase of anthocyanins within agriculturally relevant crops. Understanding the genetic basis of dark pigment accumulation would facilitate biotechnological and agricultural applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信