{"title":"槲皮素脂质体纳米颗粒治疗肝损伤的最佳浓度探讨。","authors":"Nana Yin, Jian Pang, Xiangyan Liu","doi":"10.1186/s40360-025-00951-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic injury is a common pathological process for a wide spectrum of liver diseases. Quercetin has been found to counteract this process by scavenging free radicals, but its therapeutic effect is limited due to poor water-solubility. Thus, the question of how to deliver quercetin to a target organ effectively with minimal side effects has remained a clinical challenge. Our previous research findings indicate that when quercetin is delivered in the form of liposomal nanoparticles, its targeting efficiency to the liver is significantly enhanced. Although quercetin liposomal nanoparticles have been shown to improve the therapeutic effect on liver damage compared to traditional quercetin treatment, the optimal dosage of liposomal quercetin still warrants further exploration. The aim of this study was therefore to ascertain whether there are differences in the therapeutic effects on liver damage at different dosages of quercetin liposomes and to determine the optimal dosage.</p><p><strong>Methods: </strong>62 rats modeled with liver injury were enrolled and distributed into 4 groups, where they were treated with quercetin liposome nanoparticles, blank liposome nanoparticles, simple quercetin, and normal saline accordingly. Serum samples were measured for liver function indicators, and tissue samples were analyzed by pathohistological examination. Statistical analysis was performed to quantify the difference between the experimental and control groups.</p><p><strong>Results: </strong>Both liver function and histopathological examinations demonstrated enhanced therapeutic effects as the concentration of quercetin liposome drugs increased. Moreover, compared to traditional quercetin treatments, liposomal quercetin nanoparticles of varying concentrations uniformly provide better liver protection, with the highest dose group showing the best therapeutic effect. In addition, low concentration carrier liposome nanoparticles also showed a certain protective effect on the liver damage in rats.</p><p><strong>Conclusion: </strong>Liposomal quercetin nanoparticles exhibit superior efficacy in liver protection and repair compared to pure quercetin, with the highest dose group showing the best therapeutic effect.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"26 1","pages":"112"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117872/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploration of the optimal concentration of quercetin liposome nanoparticles for the treatment of liver damage.\",\"authors\":\"Nana Yin, Jian Pang, Xiangyan Liu\",\"doi\":\"10.1186/s40360-025-00951-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatic injury is a common pathological process for a wide spectrum of liver diseases. Quercetin has been found to counteract this process by scavenging free radicals, but its therapeutic effect is limited due to poor water-solubility. Thus, the question of how to deliver quercetin to a target organ effectively with minimal side effects has remained a clinical challenge. Our previous research findings indicate that when quercetin is delivered in the form of liposomal nanoparticles, its targeting efficiency to the liver is significantly enhanced. Although quercetin liposomal nanoparticles have been shown to improve the therapeutic effect on liver damage compared to traditional quercetin treatment, the optimal dosage of liposomal quercetin still warrants further exploration. The aim of this study was therefore to ascertain whether there are differences in the therapeutic effects on liver damage at different dosages of quercetin liposomes and to determine the optimal dosage.</p><p><strong>Methods: </strong>62 rats modeled with liver injury were enrolled and distributed into 4 groups, where they were treated with quercetin liposome nanoparticles, blank liposome nanoparticles, simple quercetin, and normal saline accordingly. Serum samples were measured for liver function indicators, and tissue samples were analyzed by pathohistological examination. Statistical analysis was performed to quantify the difference between the experimental and control groups.</p><p><strong>Results: </strong>Both liver function and histopathological examinations demonstrated enhanced therapeutic effects as the concentration of quercetin liposome drugs increased. Moreover, compared to traditional quercetin treatments, liposomal quercetin nanoparticles of varying concentrations uniformly provide better liver protection, with the highest dose group showing the best therapeutic effect. In addition, low concentration carrier liposome nanoparticles also showed a certain protective effect on the liver damage in rats.</p><p><strong>Conclusion: </strong>Liposomal quercetin nanoparticles exhibit superior efficacy in liver protection and repair compared to pure quercetin, with the highest dose group showing the best therapeutic effect.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"26 1\",\"pages\":\"112\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-025-00951-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-025-00951-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Exploration of the optimal concentration of quercetin liposome nanoparticles for the treatment of liver damage.
Background: Hepatic injury is a common pathological process for a wide spectrum of liver diseases. Quercetin has been found to counteract this process by scavenging free radicals, but its therapeutic effect is limited due to poor water-solubility. Thus, the question of how to deliver quercetin to a target organ effectively with minimal side effects has remained a clinical challenge. Our previous research findings indicate that when quercetin is delivered in the form of liposomal nanoparticles, its targeting efficiency to the liver is significantly enhanced. Although quercetin liposomal nanoparticles have been shown to improve the therapeutic effect on liver damage compared to traditional quercetin treatment, the optimal dosage of liposomal quercetin still warrants further exploration. The aim of this study was therefore to ascertain whether there are differences in the therapeutic effects on liver damage at different dosages of quercetin liposomes and to determine the optimal dosage.
Methods: 62 rats modeled with liver injury were enrolled and distributed into 4 groups, where they were treated with quercetin liposome nanoparticles, blank liposome nanoparticles, simple quercetin, and normal saline accordingly. Serum samples were measured for liver function indicators, and tissue samples were analyzed by pathohistological examination. Statistical analysis was performed to quantify the difference between the experimental and control groups.
Results: Both liver function and histopathological examinations demonstrated enhanced therapeutic effects as the concentration of quercetin liposome drugs increased. Moreover, compared to traditional quercetin treatments, liposomal quercetin nanoparticles of varying concentrations uniformly provide better liver protection, with the highest dose group showing the best therapeutic effect. In addition, low concentration carrier liposome nanoparticles also showed a certain protective effect on the liver damage in rats.
Conclusion: Liposomal quercetin nanoparticles exhibit superior efficacy in liver protection and repair compared to pure quercetin, with the highest dose group showing the best therapeutic effect.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.