可持续硅藻- sio2制备锂离子电池用纳米多孔SiOx/C阳极的策略:不同碳量的比较研究

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Anders Gaarud, Kesavan Thangaian, Pedro Alonso-Sánchez, Maria Valeria Blanco
{"title":"可持续硅藻- sio2制备锂离子电池用纳米多孔SiOx/C阳极的策略:不同碳量的比较研究","authors":"Anders Gaarud,&nbsp;Kesavan Thangaian,&nbsp;Pedro Alonso-Sánchez,&nbsp;Maria Valeria Blanco","doi":"10.1002/adsu.202500117","DOIUrl":null,"url":null,"abstract":"<p>Nanostructured <i>SiO<sub>x</sub></i>/C composites are promising candidates for high energy density anodes with extended lifespan in next-generation Li-ion batteries (LIBs). However, integrating sustainable precursors for the synthesis of high performance <i>SiO<sub>x</sub></i>/C negative electrodesremains a key challenge. In this study, nanoporous <i>SiO</i><sub>2</sub> derived from the shells of industrially cultured diatom microalgae is successfully used as a template for synthesizing <i>SiO<sub>x</sub></i> via the magnesiothermic reduction reaction (MgTR), while the effectiveness of different carbon coating (CC) strategies to produce diatom-<i>SiO<sub>x</sub></i>/C from glucose as carbon precursor is thoroughly analyzed. Notably, the original nanostructure of the diatom-<i>SiO</i><sub>2</sub> frustule is preserved throughout the synthesis process, and it is demonstrated that increasing the heating ramp during MgTR enhances the Si yield, leading to a significant increase in specific capacity of the anodes from 1064 mAh.g<sup>−1</sup> (2 °C/min<sup>−1</sup>) to 1846 mAh.g<sup>−1</sup> (20 °C/min<sup>−1</sup>). A comparative analysis of three synthesis pathways for producing diatom-<i>SiO<sub>x</sub></i>/C composites: 1) MgTR of diatom-<i>SiO</i><sub>2</sub> followed by CC, 2) CC of diatom-<i>SiO</i><sub>2</sub> followed by MgTR, and 3) simultaneous reduction of diatom-<i>SiO</i><sub>2</sub> and glucose precursor, revealed that pathway (1) is most effective for producing highcapacity diatom-<i>SiO<sub>x</sub></i>/C anodes. These findings provide key enablers for developing sustainable <i>SiO<sub>x</sub></i>/C anodes of superior electrochemical performance.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies Toward the Production of Nanoporous SiOx/C Anodes from the Sustainable Diatom-SiO2 for Li-Ion Batteries: A Comparative Study of Different Carbon Amounts\",\"authors\":\"Anders Gaarud,&nbsp;Kesavan Thangaian,&nbsp;Pedro Alonso-Sánchez,&nbsp;Maria Valeria Blanco\",\"doi\":\"10.1002/adsu.202500117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanostructured <i>SiO<sub>x</sub></i>/C composites are promising candidates for high energy density anodes with extended lifespan in next-generation Li-ion batteries (LIBs). However, integrating sustainable precursors for the synthesis of high performance <i>SiO<sub>x</sub></i>/C negative electrodesremains a key challenge. In this study, nanoporous <i>SiO</i><sub>2</sub> derived from the shells of industrially cultured diatom microalgae is successfully used as a template for synthesizing <i>SiO<sub>x</sub></i> via the magnesiothermic reduction reaction (MgTR), while the effectiveness of different carbon coating (CC) strategies to produce diatom-<i>SiO<sub>x</sub></i>/C from glucose as carbon precursor is thoroughly analyzed. Notably, the original nanostructure of the diatom-<i>SiO</i><sub>2</sub> frustule is preserved throughout the synthesis process, and it is demonstrated that increasing the heating ramp during MgTR enhances the Si yield, leading to a significant increase in specific capacity of the anodes from 1064 mAh.g<sup>−1</sup> (2 °C/min<sup>−1</sup>) to 1846 mAh.g<sup>−1</sup> (20 °C/min<sup>−1</sup>). A comparative analysis of three synthesis pathways for producing diatom-<i>SiO<sub>x</sub></i>/C composites: 1) MgTR of diatom-<i>SiO</i><sub>2</sub> followed by CC, 2) CC of diatom-<i>SiO</i><sub>2</sub> followed by MgTR, and 3) simultaneous reduction of diatom-<i>SiO</i><sub>2</sub> and glucose precursor, revealed that pathway (1) is most effective for producing highcapacity diatom-<i>SiO<sub>x</sub></i>/C anodes. These findings provide key enablers for developing sustainable <i>SiO<sub>x</sub></i>/C anodes of superior electrochemical performance.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500117\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构SiOx/C复合材料是下一代锂离子电池(LIBs)高能量密度阳极的有前途的候选者。然而,整合可持续前体来合成高性能SiOx/C负极仍然是一个关键的挑战。本研究以工业培养硅藻微藻壳为原料制备纳米多孔SiO2作为模板,通过镁热还原反应(MgTR)合成硅藻SiOx,并对不同碳包覆(CC)策略以葡萄糖为碳前驱体制备硅藻SiOx/C的有效性进行了深入分析。值得注意的是,在整个合成过程中保持了硅藻- sio2结构的原始纳米结构,并且证明了在MgTR过程中增加加热斜坡可以提高Si的产率,导致阳极的比容量从1064 mAh显著增加。g−1(2°C/min−1)至1846 mAh。g−1(20℃/min−1)。对比分析了硅藻- sio2 - MgTR - CC、硅藻- sio2 - MgTR - CC、硅藻- sio2 -葡萄糖前体同时还原的三种硅藻- siox /C复合材料的合成途径,结果表明:(1)是制备高容量硅藻- siox /C阳极的最有效途径。这些发现为开发具有优异电化学性能的可持续SiOx/C阳极提供了关键的推动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies Toward the Production of Nanoporous SiOx/C Anodes from the Sustainable Diatom-SiO2 for Li-Ion Batteries: A Comparative Study of Different Carbon Amounts

Nanostructured SiOx/C composites are promising candidates for high energy density anodes with extended lifespan in next-generation Li-ion batteries (LIBs). However, integrating sustainable precursors for the synthesis of high performance SiOx/C negative electrodesremains a key challenge. In this study, nanoporous SiO2 derived from the shells of industrially cultured diatom microalgae is successfully used as a template for synthesizing SiOx via the magnesiothermic reduction reaction (MgTR), while the effectiveness of different carbon coating (CC) strategies to produce diatom-SiOx/C from glucose as carbon precursor is thoroughly analyzed. Notably, the original nanostructure of the diatom-SiO2 frustule is preserved throughout the synthesis process, and it is demonstrated that increasing the heating ramp during MgTR enhances the Si yield, leading to a significant increase in specific capacity of the anodes from 1064 mAh.g−1 (2 °C/min−1) to 1846 mAh.g−1 (20 °C/min−1). A comparative analysis of three synthesis pathways for producing diatom-SiOx/C composites: 1) MgTR of diatom-SiO2 followed by CC, 2) CC of diatom-SiO2 followed by MgTR, and 3) simultaneous reduction of diatom-SiO2 and glucose precursor, revealed that pathway (1) is most effective for producing highcapacity diatom-SiOx/C anodes. These findings provide key enablers for developing sustainable SiOx/C anodes of superior electrochemical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信