等压混合作为边界层云形成机制的研究

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Jae Min Yeom, Nithin Allwayin, Virendra P. Ghate, Katia Lamer, Fan Mei, Raymond A. Shaw
{"title":"等压混合作为边界层云形成机制的研究","authors":"Jae Min Yeom,&nbsp;Nithin Allwayin,&nbsp;Virendra P. Ghate,&nbsp;Katia Lamer,&nbsp;Fan Mei,&nbsp;Raymond A. Shaw","doi":"10.1029/2025GL115587","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the potential role of isobaric mixing in the formation of marine boundary layer clouds. Cloud formation theory emphasizes uplift and adiabatic cooling, but recent observations support the existence of small clouds forming at various altitudes, even below the lifting condensation level. Isobaric mixing of air with different thermodynamic properties can generate localized supersaturation. A Gaussian mixing model is employed to simulate this process, considering the correlation between temperature and water vapor. Cloud droplet size distributions from aircraft measurements show a persistent and prominent mode of small droplets at 9 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m, and the size of this mode compares favorably with predictions from the model. The results suggests that isobaric mixing plausibly contributes to the formation of clouds, particularly those observed at multiple altitudes with narrow droplet size distributions. This finding highlights the importance of considering isobaric mixing processes in understanding and modeling cloud formation.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 11","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115587","citationCount":"0","resultStr":"{\"title\":\"Investigation of Isobaric Mixing as a Mechanism for Boundary-Layer Cloud Formation\",\"authors\":\"Jae Min Yeom,&nbsp;Nithin Allwayin,&nbsp;Virendra P. Ghate,&nbsp;Katia Lamer,&nbsp;Fan Mei,&nbsp;Raymond A. Shaw\",\"doi\":\"10.1029/2025GL115587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the potential role of isobaric mixing in the formation of marine boundary layer clouds. Cloud formation theory emphasizes uplift and adiabatic cooling, but recent observations support the existence of small clouds forming at various altitudes, even below the lifting condensation level. Isobaric mixing of air with different thermodynamic properties can generate localized supersaturation. A Gaussian mixing model is employed to simulate this process, considering the correlation between temperature and water vapor. Cloud droplet size distributions from aircraft measurements show a persistent and prominent mode of small droplets at 9 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation> ${\\\\upmu }$</annotation>\\n </semantics></math>m, and the size of this mode compares favorably with predictions from the model. The results suggests that isobaric mixing plausibly contributes to the formation of clouds, particularly those observed at multiple altitudes with narrow droplet size distributions. This finding highlights the importance of considering isobaric mixing processes in understanding and modeling cloud formation.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 11\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115587\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115587\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115587","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了等压混合在海洋边界层云形成中的潜在作用。云的形成理论强调上升和绝热冷却,但最近的观测支持在不同高度形成小云的存在,甚至低于上升凝结层。具有不同热力学性质的空气的等压混合会产生局部过饱和。考虑温度与水汽的相关性,采用高斯混合模型对这一过程进行了模拟。飞机测量得到的云滴大小分布表明,在9 μ ${\upmu}$ m处存在持续且突出的小液滴模式,该模式的大小与模型的预测结果相吻合。结果表明,等压混合似乎有助于云的形成,特别是在多个高度观测到的具有窄液滴大小分布的云。这一发现强调了在理解和模拟云形成过程中考虑等压混合过程的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Isobaric Mixing as a Mechanism for Boundary-Layer Cloud Formation

Investigation of Isobaric Mixing as a Mechanism for Boundary-Layer Cloud Formation

This study investigates the potential role of isobaric mixing in the formation of marine boundary layer clouds. Cloud formation theory emphasizes uplift and adiabatic cooling, but recent observations support the existence of small clouds forming at various altitudes, even below the lifting condensation level. Isobaric mixing of air with different thermodynamic properties can generate localized supersaturation. A Gaussian mixing model is employed to simulate this process, considering the correlation between temperature and water vapor. Cloud droplet size distributions from aircraft measurements show a persistent and prominent mode of small droplets at 9  μ ${\upmu }$ m, and the size of this mode compares favorably with predictions from the model. The results suggests that isobaric mixing plausibly contributes to the formation of clouds, particularly those observed at multiple altitudes with narrow droplet size distributions. This finding highlights the importance of considering isobaric mixing processes in understanding and modeling cloud formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信