Emma-Liina Marjakangas, Bo Dalsgaard, Alejandro Ordonez
{"title":"基本交互生态位:对生态网络弹性的功能理解","authors":"Emma-Liina Marjakangas, Bo Dalsgaard, Alejandro Ordonez","doi":"10.1111/ele.70146","DOIUrl":null,"url":null,"abstract":"<p>Global change will create new species interactions and alter or eliminate existing ones, a process known as interaction rewiring. This rewiring can significantly affect how ecosystems function. To better predict the future structure of ecological networks, assessing their ability to adapt to changes is crucial. Here, we introduce two concepts: ‘rewiring capacity’ of a single species (the multidimensional trait space of all its potential interaction partners within a region) and ‘rewiring potential’ of a local community (the total trait space covered by interaction partners of the species at the target trophic level locally). To quantify the rewiring capacity and potential, we apply existing methods for determining species' functional interaction niches in a novel way to assess species' and communities' ability to form new interactions and the functional resilience of interaction networks to global change. To illustrate the applicability of these concepts, we quantified the rewiring capacity and potential of interactions between 1002 flowering plant species and 318 hummingbird species across the Americas. The rewiring capacity and potential metrics offer a new way to understand and quantify network resilience, allowing us to map how ecological networks respond to global change.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 6","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70146","citationCount":"0","resultStr":"{\"title\":\"Fundamental Interaction Niches: Towards a Functional Understanding of Ecological Networks' Resilience\",\"authors\":\"Emma-Liina Marjakangas, Bo Dalsgaard, Alejandro Ordonez\",\"doi\":\"10.1111/ele.70146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global change will create new species interactions and alter or eliminate existing ones, a process known as interaction rewiring. This rewiring can significantly affect how ecosystems function. To better predict the future structure of ecological networks, assessing their ability to adapt to changes is crucial. Here, we introduce two concepts: ‘rewiring capacity’ of a single species (the multidimensional trait space of all its potential interaction partners within a region) and ‘rewiring potential’ of a local community (the total trait space covered by interaction partners of the species at the target trophic level locally). To quantify the rewiring capacity and potential, we apply existing methods for determining species' functional interaction niches in a novel way to assess species' and communities' ability to form new interactions and the functional resilience of interaction networks to global change. To illustrate the applicability of these concepts, we quantified the rewiring capacity and potential of interactions between 1002 flowering plant species and 318 hummingbird species across the Americas. The rewiring capacity and potential metrics offer a new way to understand and quantify network resilience, allowing us to map how ecological networks respond to global change.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 6\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70146\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70146","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Fundamental Interaction Niches: Towards a Functional Understanding of Ecological Networks' Resilience
Global change will create new species interactions and alter or eliminate existing ones, a process known as interaction rewiring. This rewiring can significantly affect how ecosystems function. To better predict the future structure of ecological networks, assessing their ability to adapt to changes is crucial. Here, we introduce two concepts: ‘rewiring capacity’ of a single species (the multidimensional trait space of all its potential interaction partners within a region) and ‘rewiring potential’ of a local community (the total trait space covered by interaction partners of the species at the target trophic level locally). To quantify the rewiring capacity and potential, we apply existing methods for determining species' functional interaction niches in a novel way to assess species' and communities' ability to form new interactions and the functional resilience of interaction networks to global change. To illustrate the applicability of these concepts, we quantified the rewiring capacity and potential of interactions between 1002 flowering plant species and 318 hummingbird species across the Americas. The rewiring capacity and potential metrics offer a new way to understand and quantify network resilience, allowing us to map how ecological networks respond to global change.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.