Ronnie Abolafia-Rosenzweig, Cenlin He, Tzu-Shun Lin, Michael Barlage, Karl Rittger
{"title":"基于尺度感知的Noah-MP地表模式下地表积雪分数参数化改进的跨尺度积雪模拟","authors":"Ronnie Abolafia-Rosenzweig, Cenlin He, Tzu-Shun Lin, Michael Barlage, Karl Rittger","doi":"10.1029/2024MS004704","DOIUrl":null,"url":null,"abstract":"<p>Snow cover fraction (SCF) accuracy in land surface models (LSMs) impacts the accuracy of surface albedo and land-atmosphere interactions. However, SCF is a large source of uncertainty, partially because of the scale-dependent nature of snow depletion curves that is not parameterized by LSMs. Using the spatially and temporally complete observationally-informed STC-MODSCAG and Snow Data Assimilation System data sets, we develop a new scale-aware ground SCF parameterization and implement it into the Noah-MP LSM. The new scale-aware parameterization significantly reduces ground SCF errors and the scale-dependence of errors in the western U.S (WUS) compared with the baseline ground SCF formulation. Specifically, the baseline formulation overestimates ground SCF by 4%, 6%, 9%, and 12% at 1-km, 3-km, 13-km, and 25-km resolutions in the WUS, respectively, whereas biases from the enhanced scale-aware scheme are reduced to 0%–2% in box model simulations and do not exhibit a relationship with spatial scales. Noah-MP simulations using the scale-aware parameterization have smaller mean (peak) ground SCF biases than the baseline simulation by 1%–2% (3%–5%), with spatiotemporal variability depending on land cover, topography, and snow depth. Noah-MP simulations using the enhanced scale-aware parameterization remove the baseline WUS surface albedo overestimates of 0.01–0.03 in the 1-km to 25-km resolution simulations, relative to Moderate Resolution Imaging Spectroradiometer retrievals. The Noah-MP ground SCF and surface albedo improvements due to the scale-aware parameterization are found across most land cover classifications and elevations, indicating the enhanced ground SCF scheme can improve simulated snowpack and surface energy budget accuracy across a variety of WUS landscapes.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004704","citationCount":"0","resultStr":"{\"title\":\"Improved Cross-Scale Snow Cover Simulations by Developing a Scale-Aware Ground Snow Cover Fraction Parameterization in the Noah-MP Land Surface Model\",\"authors\":\"Ronnie Abolafia-Rosenzweig, Cenlin He, Tzu-Shun Lin, Michael Barlage, Karl Rittger\",\"doi\":\"10.1029/2024MS004704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Snow cover fraction (SCF) accuracy in land surface models (LSMs) impacts the accuracy of surface albedo and land-atmosphere interactions. However, SCF is a large source of uncertainty, partially because of the scale-dependent nature of snow depletion curves that is not parameterized by LSMs. Using the spatially and temporally complete observationally-informed STC-MODSCAG and Snow Data Assimilation System data sets, we develop a new scale-aware ground SCF parameterization and implement it into the Noah-MP LSM. The new scale-aware parameterization significantly reduces ground SCF errors and the scale-dependence of errors in the western U.S (WUS) compared with the baseline ground SCF formulation. Specifically, the baseline formulation overestimates ground SCF by 4%, 6%, 9%, and 12% at 1-km, 3-km, 13-km, and 25-km resolutions in the WUS, respectively, whereas biases from the enhanced scale-aware scheme are reduced to 0%–2% in box model simulations and do not exhibit a relationship with spatial scales. Noah-MP simulations using the scale-aware parameterization have smaller mean (peak) ground SCF biases than the baseline simulation by 1%–2% (3%–5%), with spatiotemporal variability depending on land cover, topography, and snow depth. Noah-MP simulations using the enhanced scale-aware parameterization remove the baseline WUS surface albedo overestimates of 0.01–0.03 in the 1-km to 25-km resolution simulations, relative to Moderate Resolution Imaging Spectroradiometer retrievals. The Noah-MP ground SCF and surface albedo improvements due to the scale-aware parameterization are found across most land cover classifications and elevations, indicating the enhanced ground SCF scheme can improve simulated snowpack and surface energy budget accuracy across a variety of WUS landscapes.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004704\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004704\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004704","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Improved Cross-Scale Snow Cover Simulations by Developing a Scale-Aware Ground Snow Cover Fraction Parameterization in the Noah-MP Land Surface Model
Snow cover fraction (SCF) accuracy in land surface models (LSMs) impacts the accuracy of surface albedo and land-atmosphere interactions. However, SCF is a large source of uncertainty, partially because of the scale-dependent nature of snow depletion curves that is not parameterized by LSMs. Using the spatially and temporally complete observationally-informed STC-MODSCAG and Snow Data Assimilation System data sets, we develop a new scale-aware ground SCF parameterization and implement it into the Noah-MP LSM. The new scale-aware parameterization significantly reduces ground SCF errors and the scale-dependence of errors in the western U.S (WUS) compared with the baseline ground SCF formulation. Specifically, the baseline formulation overestimates ground SCF by 4%, 6%, 9%, and 12% at 1-km, 3-km, 13-km, and 25-km resolutions in the WUS, respectively, whereas biases from the enhanced scale-aware scheme are reduced to 0%–2% in box model simulations and do not exhibit a relationship with spatial scales. Noah-MP simulations using the scale-aware parameterization have smaller mean (peak) ground SCF biases than the baseline simulation by 1%–2% (3%–5%), with spatiotemporal variability depending on land cover, topography, and snow depth. Noah-MP simulations using the enhanced scale-aware parameterization remove the baseline WUS surface albedo overestimates of 0.01–0.03 in the 1-km to 25-km resolution simulations, relative to Moderate Resolution Imaging Spectroradiometer retrievals. The Noah-MP ground SCF and surface albedo improvements due to the scale-aware parameterization are found across most land cover classifications and elevations, indicating the enhanced ground SCF scheme can improve simulated snowpack and surface energy budget accuracy across a variety of WUS landscapes.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.