Jack Thorley, Chris Duncan, Marta B. Manser, Tim Clutton-Brock
{"title":"将气候变化与狐獴合作繁殖的人口统计学联系起来","authors":"Jack Thorley, Chris Duncan, Marta B. Manser, Tim Clutton-Brock","doi":"10.1002/ecm.70021","DOIUrl":null,"url":null,"abstract":"<p>Animal populations in arid environments, where extreme temperatures and erratic rainfall are normal, are particularly vulnerable to climate change. While numerous studies have examined the effects of temperature and rainfall on the breeding success and survival of arid-zone species, the mechanistic pathways linking climate variation to demography remain poorly described for most species. Using long-term data from meerkats (<i>Suricata suricatta</i>) in the Kalahari Desert, we show that increases in rainfall and primary productivity (as measured by normalized difference vegetation index) were associated with improved foraging success, daily body mass gain, and body condition, which in turn contributed to enhanced breeding success and survival. Conversely, high summer temperatures were associated with reduced foraging performance and body condition. Foraging efficiency declined when daily maximum summer temperatures exceeded 35°C, and at temperatures above 37°C, diurnal mass gains often failed to offset overnight mass losses. While high temperatures had short-term detrimental effects, runs of hot days were relatively infrequent and often coincided with periods of high primary productivity. As a result, individuals were rarely in poor condition during the hottest periods of the year, suggesting that they could recover any mass lost on hot days during subsequent cooler periods. Only when high temperatures persisted alongside low primary productivity did body condition drop sharply. Although temperature variation has not yet affected the demography of our meerkat population as strongly as rainfall variation, further warming in the region and the potential for more frequent and severe hot droughts are likely to have major implications for the species' distribution and persistence. Our study emphasizes the need to consider both rainfall and temperature variations across seasons, as well as their interactions, to better understand and predict the impacts of climate change on arid-zone animals. It also demonstrates the value of long-term, high-resolution behavioral and physiological data, including frequent, year-round weighing of animals, in establishing causal links between climate and demography.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70021","citationCount":"0","resultStr":"{\"title\":\"Linking climate variability to demography in cooperatively breeding meerkats\",\"authors\":\"Jack Thorley, Chris Duncan, Marta B. Manser, Tim Clutton-Brock\",\"doi\":\"10.1002/ecm.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Animal populations in arid environments, where extreme temperatures and erratic rainfall are normal, are particularly vulnerable to climate change. While numerous studies have examined the effects of temperature and rainfall on the breeding success and survival of arid-zone species, the mechanistic pathways linking climate variation to demography remain poorly described for most species. Using long-term data from meerkats (<i>Suricata suricatta</i>) in the Kalahari Desert, we show that increases in rainfall and primary productivity (as measured by normalized difference vegetation index) were associated with improved foraging success, daily body mass gain, and body condition, which in turn contributed to enhanced breeding success and survival. Conversely, high summer temperatures were associated with reduced foraging performance and body condition. Foraging efficiency declined when daily maximum summer temperatures exceeded 35°C, and at temperatures above 37°C, diurnal mass gains often failed to offset overnight mass losses. While high temperatures had short-term detrimental effects, runs of hot days were relatively infrequent and often coincided with periods of high primary productivity. As a result, individuals were rarely in poor condition during the hottest periods of the year, suggesting that they could recover any mass lost on hot days during subsequent cooler periods. Only when high temperatures persisted alongside low primary productivity did body condition drop sharply. Although temperature variation has not yet affected the demography of our meerkat population as strongly as rainfall variation, further warming in the region and the potential for more frequent and severe hot droughts are likely to have major implications for the species' distribution and persistence. Our study emphasizes the need to consider both rainfall and temperature variations across seasons, as well as their interactions, to better understand and predict the impacts of climate change on arid-zone animals. It also demonstrates the value of long-term, high-resolution behavioral and physiological data, including frequent, year-round weighing of animals, in establishing causal links between climate and demography.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 2\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70021\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70021","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Linking climate variability to demography in cooperatively breeding meerkats
Animal populations in arid environments, where extreme temperatures and erratic rainfall are normal, are particularly vulnerable to climate change. While numerous studies have examined the effects of temperature and rainfall on the breeding success and survival of arid-zone species, the mechanistic pathways linking climate variation to demography remain poorly described for most species. Using long-term data from meerkats (Suricata suricatta) in the Kalahari Desert, we show that increases in rainfall and primary productivity (as measured by normalized difference vegetation index) were associated with improved foraging success, daily body mass gain, and body condition, which in turn contributed to enhanced breeding success and survival. Conversely, high summer temperatures were associated with reduced foraging performance and body condition. Foraging efficiency declined when daily maximum summer temperatures exceeded 35°C, and at temperatures above 37°C, diurnal mass gains often failed to offset overnight mass losses. While high temperatures had short-term detrimental effects, runs of hot days were relatively infrequent and often coincided with periods of high primary productivity. As a result, individuals were rarely in poor condition during the hottest periods of the year, suggesting that they could recover any mass lost on hot days during subsequent cooler periods. Only when high temperatures persisted alongside low primary productivity did body condition drop sharply. Although temperature variation has not yet affected the demography of our meerkat population as strongly as rainfall variation, further warming in the region and the potential for more frequent and severe hot droughts are likely to have major implications for the species' distribution and persistence. Our study emphasizes the need to consider both rainfall and temperature variations across seasons, as well as their interactions, to better understand and predict the impacts of climate change on arid-zone animals. It also demonstrates the value of long-term, high-resolution behavioral and physiological data, including frequent, year-round weighing of animals, in establishing causal links between climate and demography.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.