具有快速环境修复活性的密切键合s型异质结光催化剂的双电荷转移机制

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Potlako J. Mafa, Mope E. Malefane, Francis Opoku, Adewale O. Oladipo, Gcina Mamba, Tunde L. Yusuf, Jemal Fito Nure, Sogolo L. Lebelo, Dan Liu, Jianzhou Gui, Bhekie B. Mamba, Alex T. Kuvarega
{"title":"具有快速环境修复活性的密切键合s型异质结光催化剂的双电荷转移机制","authors":"Potlako J. Mafa,&nbsp;Mope E. Malefane,&nbsp;Francis Opoku,&nbsp;Adewale O. Oladipo,&nbsp;Gcina Mamba,&nbsp;Tunde L. Yusuf,&nbsp;Jemal Fito Nure,&nbsp;Sogolo L. Lebelo,&nbsp;Dan Liu,&nbsp;Jianzhou Gui,&nbsp;Bhekie B. Mamba,&nbsp;Alex T. Kuvarega","doi":"10.1002/adsu.202401070","DOIUrl":null,"url":null,"abstract":"<p>Fabrication of a photocatalyst with the desired characteristics of high charge isolation and expeditious photocatalytic performance is crucial in photocatalysis. Constructing an interfacial chemically bonded S-scheme heterojunction is an effective path to the realization of high interfacial charge transfer and performance. Herein, Mg-Bi<sub>2</sub>O<sub>3</sub>/dark gray g-C<sub>3</sub>N<sub>4</sub> (MBOdCN) S-scheme heterojunction with Bi-N bond bridges is successfully constructed using an in situ calcination strategy for oxytetracycline (OTC) degradation. The MBOdCN (1:5) displays outstanding performance with efficiency and rate constant of 99.56% and 0.0235 min<sup>−1</sup>, respectively. The synergy of n-π* transition, Mg defects, and Bi–N bond bridges in the MBOdCN enhances the performance of the S-scheme heterojunction. X-ray photoelectron spectroscopy (XPS) analysis, work function measurements, and density functional theory (DFT) reveal the formation of MBOdCN S-scheme heterojunction. In this system, trapping experiments and electron-spin resonance (ESR) spectroscopy confirm the predominance of <sup>•</sup>O<sub>2</sub><sup>−</sup> &gt; h<sup>+</sup> &gt; <sup>•</sup>OH during OTC degradation. The degradation pathways and byproducts are investigated with LC-MS and the toxicity study is undertaken on the OTC degradation byproducts and photocatalytic materials. This work provides a holistic understanding of the novel S-scheme heterojunction by introducing interfacial chemical bond bridges and defects as dual charge transfer channels.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202401070","citationCount":"0","resultStr":"{\"title\":\"Dual Charge Transfer Mechanisms in Intimately Bonded S-scheme Heterojunction Photocatalyst with Expeditious Activity toward Environmental Remediation\",\"authors\":\"Potlako J. Mafa,&nbsp;Mope E. Malefane,&nbsp;Francis Opoku,&nbsp;Adewale O. Oladipo,&nbsp;Gcina Mamba,&nbsp;Tunde L. Yusuf,&nbsp;Jemal Fito Nure,&nbsp;Sogolo L. Lebelo,&nbsp;Dan Liu,&nbsp;Jianzhou Gui,&nbsp;Bhekie B. Mamba,&nbsp;Alex T. Kuvarega\",\"doi\":\"10.1002/adsu.202401070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fabrication of a photocatalyst with the desired characteristics of high charge isolation and expeditious photocatalytic performance is crucial in photocatalysis. Constructing an interfacial chemically bonded S-scheme heterojunction is an effective path to the realization of high interfacial charge transfer and performance. Herein, Mg-Bi<sub>2</sub>O<sub>3</sub>/dark gray g-C<sub>3</sub>N<sub>4</sub> (MBOdCN) S-scheme heterojunction with Bi-N bond bridges is successfully constructed using an in situ calcination strategy for oxytetracycline (OTC) degradation. The MBOdCN (1:5) displays outstanding performance with efficiency and rate constant of 99.56% and 0.0235 min<sup>−1</sup>, respectively. The synergy of n-π* transition, Mg defects, and Bi–N bond bridges in the MBOdCN enhances the performance of the S-scheme heterojunction. X-ray photoelectron spectroscopy (XPS) analysis, work function measurements, and density functional theory (DFT) reveal the formation of MBOdCN S-scheme heterojunction. In this system, trapping experiments and electron-spin resonance (ESR) spectroscopy confirm the predominance of <sup>•</sup>O<sub>2</sub><sup>−</sup> &gt; h<sup>+</sup> &gt; <sup>•</sup>OH during OTC degradation. The degradation pathways and byproducts are investigated with LC-MS and the toxicity study is undertaken on the OTC degradation byproducts and photocatalytic materials. This work provides a holistic understanding of the novel S-scheme heterojunction by introducing interfacial chemical bond bridges and defects as dual charge transfer channels.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202401070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202401070\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202401070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

制备具有高电荷隔离性和快速光催化性能的光催化剂是光催化的关键。构建界面化学键合s型异质结是实现高界面电荷转移和性能的有效途径。本文采用原位煅烧策略,成功构建了具有Bi-N键桥的Mg-Bi2O3/深灰色g-C3N4 (MBOdCN) S-scheme异质结,用于土霉素(OTC)的降解。MBOdCN(1:5)的效率和速率常数分别为99.56%和0.0235 min−1。MBOdCN中n-π*跃迁、Mg缺陷和Bi-N键桥的协同作用增强了S-scheme异质结的性能。x射线光电子能谱(XPS)分析、功函数测量和密度泛函理论(DFT)揭示了MBOdCN S-scheme异质结的形成。在该体系中,俘获实验和电子自旋共振(ESR)光谱证实了•O2−>的优势;h +比;•OH在OTC降解过程中。采用LC-MS对其降解途径和副产物进行了研究,并对OTC降解副产物和光催化材料进行了毒性研究。这项工作通过引入界面化学键桥和缺陷作为双电荷转移通道,提供了对新型s型异质结的整体理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Charge Transfer Mechanisms in Intimately Bonded S-scheme Heterojunction Photocatalyst with Expeditious Activity toward Environmental Remediation

Fabrication of a photocatalyst with the desired characteristics of high charge isolation and expeditious photocatalytic performance is crucial in photocatalysis. Constructing an interfacial chemically bonded S-scheme heterojunction is an effective path to the realization of high interfacial charge transfer and performance. Herein, Mg-Bi2O3/dark gray g-C3N4 (MBOdCN) S-scheme heterojunction with Bi-N bond bridges is successfully constructed using an in situ calcination strategy for oxytetracycline (OTC) degradation. The MBOdCN (1:5) displays outstanding performance with efficiency and rate constant of 99.56% and 0.0235 min−1, respectively. The synergy of n-π* transition, Mg defects, and Bi–N bond bridges in the MBOdCN enhances the performance of the S-scheme heterojunction. X-ray photoelectron spectroscopy (XPS) analysis, work function measurements, and density functional theory (DFT) reveal the formation of MBOdCN S-scheme heterojunction. In this system, trapping experiments and electron-spin resonance (ESR) spectroscopy confirm the predominance of O2 > h+ > OH during OTC degradation. The degradation pathways and byproducts are investigated with LC-MS and the toxicity study is undertaken on the OTC degradation byproducts and photocatalytic materials. This work provides a holistic understanding of the novel S-scheme heterojunction by introducing interfacial chemical bond bridges and defects as dual charge transfer channels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信