Peng Cai, Xin He, Kangli Wang, Zidong Zhang, Qingyuan Wang, Yumeng Liu, Haomiao Li, Min Zhou, Wei Wang, Kai Jiang
{"title":"内建电场对稳定水性摇椅锌离子电池的影响:剪裁溶剂化鞘和溶剂化Zn2+的脱溶过程","authors":"Peng Cai, Xin He, Kangli Wang, Zidong Zhang, Qingyuan Wang, Yumeng Liu, Haomiao Li, Min Zhou, Wei Wang, Kai Jiang","doi":"10.1002/cey2.691","DOIUrl":null,"url":null,"abstract":"<p>Currently, although some progress has been made in infancy-stage rocking-chair aqueous zinc-ion batteries (AZIBs), more discussions have focused only on the different electrochemical performances displayed by different material types rather than the intrinsic ion transport migration electrochemistry. Herein, we for the first time delve into the mechanism of tailoring the solvation sheath and desolvation processes at the electrode/electrolyte interfaces to enhance the structural stabilities in the deep discharge states. In this work, the TiO<sub>2</sub> front interfaces are induced on electrochemically active but unstable TiSe<sub>2</sub> host materials to construct unique TiO<sub>2</sub>/TiSe<sub>2</sub>–C heterointerfaces. According to X-ray absorption near edge structure (XANES), differential electrochemical mass spectrometry (DEMS), and electrochemical quartz crystal microbalance (EQCM), the intercalated species are transformed from [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> to [Zn(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> due to the built-in electric fields (BEFs) effects, further accelerating the ion transfer kinetics. Furthermore, owing to the absence of high-energy desolvation solvents released from desolvation processes, hydrogen evolution reaction (HER) energy barriers, Ti–Se bond strength, and structural stabilities are significantly improved, and the initial CE and HER overpotentials of the TiO<sub>2</sub>/TiSe<sub>2</sub>–C heterointerfaces increased from 13.76% to 84.7%, and from 1.04 to 1.30 V, respectively, and the H<sub>2</sub> precipitation current density even at −1.3 V decreased by 73.2%. This work provides valuable insights into the complex interface electrochemical mechanism of tailoring the solvation sheath and desolvation processes toward rocking-chair zinc-ion batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 5","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.691","citationCount":"0","resultStr":"{\"title\":\"Built-In Electric Field Effects Tailoring Solvation Sheath and Desolvation Processes of Solvated Zn2+ Toward Stable Aqueous Rocking-Chair Zinc-Ion Batteries\",\"authors\":\"Peng Cai, Xin He, Kangli Wang, Zidong Zhang, Qingyuan Wang, Yumeng Liu, Haomiao Li, Min Zhou, Wei Wang, Kai Jiang\",\"doi\":\"10.1002/cey2.691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, although some progress has been made in infancy-stage rocking-chair aqueous zinc-ion batteries (AZIBs), more discussions have focused only on the different electrochemical performances displayed by different material types rather than the intrinsic ion transport migration electrochemistry. Herein, we for the first time delve into the mechanism of tailoring the solvation sheath and desolvation processes at the electrode/electrolyte interfaces to enhance the structural stabilities in the deep discharge states. In this work, the TiO<sub>2</sub> front interfaces are induced on electrochemically active but unstable TiSe<sub>2</sub> host materials to construct unique TiO<sub>2</sub>/TiSe<sub>2</sub>–C heterointerfaces. According to X-ray absorption near edge structure (XANES), differential electrochemical mass spectrometry (DEMS), and electrochemical quartz crystal microbalance (EQCM), the intercalated species are transformed from [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> to [Zn(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> due to the built-in electric fields (BEFs) effects, further accelerating the ion transfer kinetics. Furthermore, owing to the absence of high-energy desolvation solvents released from desolvation processes, hydrogen evolution reaction (HER) energy barriers, Ti–Se bond strength, and structural stabilities are significantly improved, and the initial CE and HER overpotentials of the TiO<sub>2</sub>/TiSe<sub>2</sub>–C heterointerfaces increased from 13.76% to 84.7%, and from 1.04 to 1.30 V, respectively, and the H<sub>2</sub> precipitation current density even at −1.3 V decreased by 73.2%. This work provides valuable insights into the complex interface electrochemical mechanism of tailoring the solvation sheath and desolvation processes toward rocking-chair zinc-ion batteries.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":24.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.691\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.691\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.691","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Built-In Electric Field Effects Tailoring Solvation Sheath and Desolvation Processes of Solvated Zn2+ Toward Stable Aqueous Rocking-Chair Zinc-Ion Batteries
Currently, although some progress has been made in infancy-stage rocking-chair aqueous zinc-ion batteries (AZIBs), more discussions have focused only on the different electrochemical performances displayed by different material types rather than the intrinsic ion transport migration electrochemistry. Herein, we for the first time delve into the mechanism of tailoring the solvation sheath and desolvation processes at the electrode/electrolyte interfaces to enhance the structural stabilities in the deep discharge states. In this work, the TiO2 front interfaces are induced on electrochemically active but unstable TiSe2 host materials to construct unique TiO2/TiSe2–C heterointerfaces. According to X-ray absorption near edge structure (XANES), differential electrochemical mass spectrometry (DEMS), and electrochemical quartz crystal microbalance (EQCM), the intercalated species are transformed from [Zn(H2O)6]2+ to [Zn(H2O)2]2+ due to the built-in electric fields (BEFs) effects, further accelerating the ion transfer kinetics. Furthermore, owing to the absence of high-energy desolvation solvents released from desolvation processes, hydrogen evolution reaction (HER) energy barriers, Ti–Se bond strength, and structural stabilities are significantly improved, and the initial CE and HER overpotentials of the TiO2/TiSe2–C heterointerfaces increased from 13.76% to 84.7%, and from 1.04 to 1.30 V, respectively, and the H2 precipitation current density even at −1.3 V decreased by 73.2%. This work provides valuable insights into the complex interface electrochemical mechanism of tailoring the solvation sheath and desolvation processes toward rocking-chair zinc-ion batteries.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.