用于植物病害检测的深度卷积神经网络:一种移动应用方法(Agri Bot)

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hegazi Ibrahim, Abdelmoty M. Ahmed, Belgacem Bouallegue, Mahmoud M. Khattab, Mohab Abd El-Fattah, Nesma Abd El-Mawla
{"title":"用于植物病害检测的深度卷积神经网络:一种移动应用方法(Agri Bot)","authors":"Hegazi Ibrahim,&nbsp;Abdelmoty M. Ahmed,&nbsp;Belgacem Bouallegue,&nbsp;Mahmoud M. Khattab,&nbsp;Mohab Abd El-Fattah,&nbsp;Nesma Abd El-Mawla","doi":"10.1155/int/7644407","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Plant diseases imperil global food security, decimating crop yields and endangering farmers’ livelihoods. Rapid, accurate detection remains a challenge, particularly in resource-constrained environments lacking portable tools. Our contribution, Agri Bot, introduces a pioneering deep convolutional neural network (CNN) model, uniquely optimized for mobile deployment, transforming plant disease diagnosis. This novel model integrates a lightweight architecture with advanced feature extraction, achieving an exceptional 97.30% accuracy and 98.76% area under the curve (AUC). Unlike computationally intensive traditional CNNs, Agri Bot’s innovative design—featuring a hybrid convolutional autoencoder, max pooling, and dropout layers—ensures high-speed, real-time performance on mobile devices. Comparative studies reveal Agri Bot’s superiority, surpassing state-of-the-art models like VGG16 (71.48%) and ResNet50 (96.46%), while rivaling InceptionV3 (99.07%) with significantly lower computational demands. By delivering precise, accessible diagnostics to remote regions, Agri Bot revolutionizes agricultural disease management, enhancing crop resilience and global food security.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7644407","citationCount":"0","resultStr":"{\"title\":\"Deep Convolutional Neural Networks for Plant Disease Detection: A Mobile Application Approach (Agri Bot)\",\"authors\":\"Hegazi Ibrahim,&nbsp;Abdelmoty M. Ahmed,&nbsp;Belgacem Bouallegue,&nbsp;Mahmoud M. Khattab,&nbsp;Mohab Abd El-Fattah,&nbsp;Nesma Abd El-Mawla\",\"doi\":\"10.1155/int/7644407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Plant diseases imperil global food security, decimating crop yields and endangering farmers’ livelihoods. Rapid, accurate detection remains a challenge, particularly in resource-constrained environments lacking portable tools. Our contribution, Agri Bot, introduces a pioneering deep convolutional neural network (CNN) model, uniquely optimized for mobile deployment, transforming plant disease diagnosis. This novel model integrates a lightweight architecture with advanced feature extraction, achieving an exceptional 97.30% accuracy and 98.76% area under the curve (AUC). Unlike computationally intensive traditional CNNs, Agri Bot’s innovative design—featuring a hybrid convolutional autoencoder, max pooling, and dropout layers—ensures high-speed, real-time performance on mobile devices. Comparative studies reveal Agri Bot’s superiority, surpassing state-of-the-art models like VGG16 (71.48%) and ResNet50 (96.46%), while rivaling InceptionV3 (99.07%) with significantly lower computational demands. By delivering precise, accessible diagnostics to remote regions, Agri Bot revolutionizes agricultural disease management, enhancing crop resilience and global food security.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7644407\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/7644407\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/7644407","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

植物病害危及全球粮食安全,使作物减产,危及农民生计。快速、准确的检测仍然是一个挑战,特别是在缺乏便携式工具的资源有限的环境中。我们的贡献,Agri Bot,引入了一个开创性的深度卷积神经网络(CNN)模型,该模型针对移动部署进行了独特的优化,改变了植物疾病诊断。这种新颖的模型将轻量级架构与先进的特征提取相结合,实现了97.30%的准确率和98.76%的曲线下面积(AUC)。与计算密集型的传统cnn不同,Agri Bot的创新设计——以混合卷积自动编码器、最大池化和退出层为特色——确保了在移动设备上的高速实时性能。对比研究表明,Agri Bot的优势,超过了VGG16(71.48%)和ResNet50(96.46%)等最先进的模型,而与InceptionV3(99.07%)相比,计算需求明显更低。通过向偏远地区提供精确、便捷的诊断方法,Agri Bot彻底改变了农业疾病管理,增强了作物抗灾能力和全球粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Convolutional Neural Networks for Plant Disease Detection: A Mobile Application Approach (Agri Bot)

Deep Convolutional Neural Networks for Plant Disease Detection: A Mobile Application Approach (Agri Bot)

Plant diseases imperil global food security, decimating crop yields and endangering farmers’ livelihoods. Rapid, accurate detection remains a challenge, particularly in resource-constrained environments lacking portable tools. Our contribution, Agri Bot, introduces a pioneering deep convolutional neural network (CNN) model, uniquely optimized for mobile deployment, transforming plant disease diagnosis. This novel model integrates a lightweight architecture with advanced feature extraction, achieving an exceptional 97.30% accuracy and 98.76% area under the curve (AUC). Unlike computationally intensive traditional CNNs, Agri Bot’s innovative design—featuring a hybrid convolutional autoencoder, max pooling, and dropout layers—ensures high-speed, real-time performance on mobile devices. Comparative studies reveal Agri Bot’s superiority, surpassing state-of-the-art models like VGG16 (71.48%) and ResNet50 (96.46%), while rivaling InceptionV3 (99.07%) with significantly lower computational demands. By delivering precise, accessible diagnostics to remote regions, Agri Bot revolutionizes agricultural disease management, enhancing crop resilience and global food security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信