从数字化全切片组织学图像到生物标志物发现:脑癌病理中手工特征分析的协议

Brain-X Pub Date : 2025-05-28 DOI:10.1002/brx2.70030
Xuanjun Lu, Yawen Ying, Jing Chen, Zhiyang Chen, Yuxin Wu, Prateek Prasanna, Xin Chen, Mingli Jing, Zaiyi Liu, Cheng Lu
{"title":"从数字化全切片组织学图像到生物标志物发现:脑癌病理中手工特征分析的协议","authors":"Xuanjun Lu,&nbsp;Yawen Ying,&nbsp;Jing Chen,&nbsp;Zhiyang Chen,&nbsp;Yuxin Wu,&nbsp;Prateek Prasanna,&nbsp;Xin Chen,&nbsp;Mingli Jing,&nbsp;Zaiyi Liu,&nbsp;Cheng Lu","doi":"10.1002/brx2.70030","DOIUrl":null,"url":null,"abstract":"<p>Hematoxylin and eosin (H&amp;E)-stained histopathological slides contain abundant information about cellular and tissue morphology and have been the cornerstone of tumor diagnosis for decades. In recent years, advancements in digital pathology have made whole-slide images (WSIs) widely applicable for diagnosis, prognosis, and prediction in brain cancer. However, there remains a lack of systematic tools and standardized protocols for using handcrafted features in brain cancer histological analysis. In this study, we present a protocol for handcrafted feature analysis in brain cancer pathology (PHBCP) to systematically extract, analyze, model, and visualize handcrafted features from WSIs. The protocol enabled the discovery of biomarkers from WSIs through a series of well-defined steps. The PHBCP comprises seven main steps: (1) problem definition, (2) data quality control, (3) image preprocessing, (4) feature extraction, (5) feature filtering, (6) modeling, and (7) performance analysis. As an exemplary application, we collected pathological data of 589 patients from two cohorts and applied the PHBCP to predict the 2-year survival of glioblastoma multiforme (GBM) patients. Among the 72 models combining nine feature selection methods and eight machine learning classifiers, the optimal model combination achieved discriminative performance with an average area under the curve (AUC) of 0.615 over 100 iterations under five-fold cross-validation. In the external validation cohort, the optimal model combination achieved a generalization performance with an AUC of 0.594. We provide an open-source code repository (GitHub website: https://github.com/XuanjunLu/PHBCP) to facilitate effective collaboration between medical and technical experts, thereby advancing the field of computational pathology in brain cancer.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70030","citationCount":"0","resultStr":"{\"title\":\"From digitized whole-slide histology images to biomarker discovery: A protocol for handcrafted feature analysis in brain cancer pathology\",\"authors\":\"Xuanjun Lu,&nbsp;Yawen Ying,&nbsp;Jing Chen,&nbsp;Zhiyang Chen,&nbsp;Yuxin Wu,&nbsp;Prateek Prasanna,&nbsp;Xin Chen,&nbsp;Mingli Jing,&nbsp;Zaiyi Liu,&nbsp;Cheng Lu\",\"doi\":\"10.1002/brx2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hematoxylin and eosin (H&amp;E)-stained histopathological slides contain abundant information about cellular and tissue morphology and have been the cornerstone of tumor diagnosis for decades. In recent years, advancements in digital pathology have made whole-slide images (WSIs) widely applicable for diagnosis, prognosis, and prediction in brain cancer. However, there remains a lack of systematic tools and standardized protocols for using handcrafted features in brain cancer histological analysis. In this study, we present a protocol for handcrafted feature analysis in brain cancer pathology (PHBCP) to systematically extract, analyze, model, and visualize handcrafted features from WSIs. The protocol enabled the discovery of biomarkers from WSIs through a series of well-defined steps. The PHBCP comprises seven main steps: (1) problem definition, (2) data quality control, (3) image preprocessing, (4) feature extraction, (5) feature filtering, (6) modeling, and (7) performance analysis. As an exemplary application, we collected pathological data of 589 patients from two cohorts and applied the PHBCP to predict the 2-year survival of glioblastoma multiforme (GBM) patients. Among the 72 models combining nine feature selection methods and eight machine learning classifiers, the optimal model combination achieved discriminative performance with an average area under the curve (AUC) of 0.615 over 100 iterations under five-fold cross-validation. In the external validation cohort, the optimal model combination achieved a generalization performance with an AUC of 0.594. We provide an open-source code repository (GitHub website: https://github.com/XuanjunLu/PHBCP) to facilitate effective collaboration between medical and technical experts, thereby advancing the field of computational pathology in brain cancer.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

苏木精和伊红(H&;E)染色的组织病理学切片包含丰富的细胞和组织形态信息,几十年来一直是肿瘤诊断的基石。近年来,数字病理学的进步使全幻灯片图像(wsi)广泛应用于脑癌的诊断、预后和预测。然而,在脑癌组织学分析中,仍然缺乏系统的工具和标准化的方案来使用手工制作的特征。在这项研究中,我们提出了一种脑癌病理(PHBCP)的手工特征分析方案,以系统地提取、分析、建模和可视化来自wsi的手工特征。该方案通过一系列明确定义的步骤,从wsi中发现生物标志物。PHBCP包括七个主要步骤:(1)问题定义,(2)数据质量控制,(3)图像预处理,(4)特征提取,(5)特征滤波,(6)建模,(7)性能分析。作为一个示例性应用,我们收集了来自两个队列的589例患者的病理数据,并应用PHBCP预测多形性胶质母细胞瘤(GBM)患者的2年生存率。在结合9种特征选择方法和8种机器学习分类器的72个模型中,最优模型组合在5次交叉验证下,100次迭代的平均曲线下面积(AUC)为0.615。在外部验证队列中,最优模型组合的泛化性能达到了0.594的AUC。我们提供了一个开源代码存储库(GitHub网站:https://github.com/XuanjunLu/PHBCP),以促进医学和技术专家之间的有效合作,从而推进脑癌计算病理学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From digitized whole-slide histology images to biomarker discovery: A protocol for handcrafted feature analysis in brain cancer pathology

From digitized whole-slide histology images to biomarker discovery: A protocol for handcrafted feature analysis in brain cancer pathology

Hematoxylin and eosin (H&E)-stained histopathological slides contain abundant information about cellular and tissue morphology and have been the cornerstone of tumor diagnosis for decades. In recent years, advancements in digital pathology have made whole-slide images (WSIs) widely applicable for diagnosis, prognosis, and prediction in brain cancer. However, there remains a lack of systematic tools and standardized protocols for using handcrafted features in brain cancer histological analysis. In this study, we present a protocol for handcrafted feature analysis in brain cancer pathology (PHBCP) to systematically extract, analyze, model, and visualize handcrafted features from WSIs. The protocol enabled the discovery of biomarkers from WSIs through a series of well-defined steps. The PHBCP comprises seven main steps: (1) problem definition, (2) data quality control, (3) image preprocessing, (4) feature extraction, (5) feature filtering, (6) modeling, and (7) performance analysis. As an exemplary application, we collected pathological data of 589 patients from two cohorts and applied the PHBCP to predict the 2-year survival of glioblastoma multiforme (GBM) patients. Among the 72 models combining nine feature selection methods and eight machine learning classifiers, the optimal model combination achieved discriminative performance with an average area under the curve (AUC) of 0.615 over 100 iterations under five-fold cross-validation. In the external validation cohort, the optimal model combination achieved a generalization performance with an AUC of 0.594. We provide an open-source code repository (GitHub website: https://github.com/XuanjunLu/PHBCP) to facilitate effective collaboration between medical and technical experts, thereby advancing the field of computational pathology in brain cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信