环形振荡器与多功能天线协同设计的321 - 343 ghz小型集成CMOS散热器

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiawei Yang;Yizhu Shen;Zhenghuan Wei;Sanming Hu
{"title":"环形振荡器与多功能天线协同设计的321 - 343 ghz小型集成CMOS散热器","authors":"Jiawei Yang;Yizhu Shen;Zhenghuan Wei;Sanming Hu","doi":"10.1109/TCSI.2025.3554680","DOIUrl":null,"url":null,"abstract":"This work presents a compact integrated CMOS radiator with a tuning range of 321-343 GHz. The miniaturization and enhanced performance of the radiator is achieved through co-designing a ring oscillator and a multifunctional antenna. The multi-stage ring oscillator features a variable common-source (CS) stage, which is proposed to achieve a broad frequency tuning range. To enhance the performance of the proposed variable CS stage for terahertz (THz) oscillator, wideband load impedances for all harmonics are theoretically analyzed and recursively optimized. The multifunctional antenna integrates six key functions into a simple compact structure: 1) inherently embedding the ring oscillator within a symmetric layout to ensure uniform operation, 2) directly combining the desired third harmonic signals without bulky and lossy passive networks, 3) radiating the desired third harmonic, 4) suppressing unwanted even harmonics, 5) providing fundamental inductance for the ring oscillator, and 6) supplying DC bias at virtual ground. For experimental validation, a THz radiator including a four-stage ring oscillator and a multifunctional antenna, is co-designed and fabricated in 40 nm CMOS process. The total chip area is as compact as 0.12 mm<inline-formula> <tex-math>${}^{\\mathbf {2}}$ </tex-math></inline-formula>. The measured output power and EIRP are −3.6 dBm and −9 dBm at 343 GHz, respectively, with a low DC power consumption of 46 mW. Moreover, the CMOS THz radiator is with a measured frequency tuning range of 6.7%, and DC-to-<inline-formula> <tex-math>$P_{\\mathbf {out}}$ </tex-math></inline-formula> efficiency of 0.95%. This compact radiator demonstrates promising potential for wideband and high-efficiency THz applications.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 6","pages":"2603-2613"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact 321–343-GHz Integrated CMOS Radiator by Co-Designing Ring Oscillator and Multifunctional Antenna\",\"authors\":\"Jiawei Yang;Yizhu Shen;Zhenghuan Wei;Sanming Hu\",\"doi\":\"10.1109/TCSI.2025.3554680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a compact integrated CMOS radiator with a tuning range of 321-343 GHz. The miniaturization and enhanced performance of the radiator is achieved through co-designing a ring oscillator and a multifunctional antenna. The multi-stage ring oscillator features a variable common-source (CS) stage, which is proposed to achieve a broad frequency tuning range. To enhance the performance of the proposed variable CS stage for terahertz (THz) oscillator, wideband load impedances for all harmonics are theoretically analyzed and recursively optimized. The multifunctional antenna integrates six key functions into a simple compact structure: 1) inherently embedding the ring oscillator within a symmetric layout to ensure uniform operation, 2) directly combining the desired third harmonic signals without bulky and lossy passive networks, 3) radiating the desired third harmonic, 4) suppressing unwanted even harmonics, 5) providing fundamental inductance for the ring oscillator, and 6) supplying DC bias at virtual ground. For experimental validation, a THz radiator including a four-stage ring oscillator and a multifunctional antenna, is co-designed and fabricated in 40 nm CMOS process. The total chip area is as compact as 0.12 mm<inline-formula> <tex-math>${}^{\\\\mathbf {2}}$ </tex-math></inline-formula>. The measured output power and EIRP are −3.6 dBm and −9 dBm at 343 GHz, respectively, with a low DC power consumption of 46 mW. Moreover, the CMOS THz radiator is with a measured frequency tuning range of 6.7%, and DC-to-<inline-formula> <tex-math>$P_{\\\\mathbf {out}}$ </tex-math></inline-formula> efficiency of 0.95%. This compact radiator demonstrates promising potential for wideband and high-efficiency THz applications.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"72 6\",\"pages\":\"2603-2613\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947031/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10947031/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种调谐范围为321-343 GHz的紧凑集成CMOS散热器。通过环形振荡器和多功能天线的协同设计,实现了辐射器的小型化和性能增强。多级环形振荡器采用可变共源级,实现了较宽的频率调谐范围。为了提高所提出的太赫兹(THz)振荡器可变CS级的性能,对各谐波的宽带负载阻抗进行了理论分析和递归优化。该多功能天线将六个关键功能集成到一个简单紧凑的结构中:1)在对称布局中固有地嵌入环形振荡器以确保均匀工作,2)直接组合所需的三次谐波信号,而不需要庞大和有损耗的无源网络,3)辐射所需的三次谐波,4)抑制不需要的均匀谐波,5)为环形振荡器提供基本电感,6)在虚拟地提供直流偏置。为了进行实验验证,采用40 nm CMOS工艺,设计并制作了一个包含四级环形振荡器和多功能天线的太赫兹辐射器。总晶片面积仅为0.12 mm ${}^{\mathbf{2}}$。在343 GHz时,测量到的输出功率和EIRP分别为−3.6 dBm和−9 dBm,直流功耗仅为46 mW。此外,CMOS太赫兹辐射器的测量频率调谐范围为6.7%,DC-to- $P_{\mathbf {out}}$效率为0.95%。这种紧凑型散热器显示出宽带和高效太赫兹应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compact 321–343-GHz Integrated CMOS Radiator by Co-Designing Ring Oscillator and Multifunctional Antenna
This work presents a compact integrated CMOS radiator with a tuning range of 321-343 GHz. The miniaturization and enhanced performance of the radiator is achieved through co-designing a ring oscillator and a multifunctional antenna. The multi-stage ring oscillator features a variable common-source (CS) stage, which is proposed to achieve a broad frequency tuning range. To enhance the performance of the proposed variable CS stage for terahertz (THz) oscillator, wideband load impedances for all harmonics are theoretically analyzed and recursively optimized. The multifunctional antenna integrates six key functions into a simple compact structure: 1) inherently embedding the ring oscillator within a symmetric layout to ensure uniform operation, 2) directly combining the desired third harmonic signals without bulky and lossy passive networks, 3) radiating the desired third harmonic, 4) suppressing unwanted even harmonics, 5) providing fundamental inductance for the ring oscillator, and 6) supplying DC bias at virtual ground. For experimental validation, a THz radiator including a four-stage ring oscillator and a multifunctional antenna, is co-designed and fabricated in 40 nm CMOS process. The total chip area is as compact as 0.12 mm ${}^{\mathbf {2}}$ . The measured output power and EIRP are −3.6 dBm and −9 dBm at 343 GHz, respectively, with a low DC power consumption of 46 mW. Moreover, the CMOS THz radiator is with a measured frequency tuning range of 6.7%, and DC-to- $P_{\mathbf {out}}$ efficiency of 0.95%. This compact radiator demonstrates promising potential for wideband and high-efficiency THz applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信