面向短距离互连的0.62 pj /Bit 60ghz OOK接收机

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junhong Liu;Yi Wu;Guangyin Feng;Rongbin Liu;Shaoxian Li;Chuan Hu;Xiuyin Zhang
{"title":"面向短距离互连的0.62 pj /Bit 60ghz OOK接收机","authors":"Junhong Liu;Yi Wu;Guangyin Feng;Rongbin Liu;Shaoxian Li;Chuan Hu;Xiuyin Zhang","doi":"10.1109/TCSII.2025.3560305","DOIUrl":null,"url":null,"abstract":"This brief presents an energy-efficient 60-GHz OOK receiver for massive short-range interconnects, addressing two key issues including interference in power distribution network and trade-off between sensitivity and energy efficiency. Variable gain low-noise amplifier with custom-designed bias-supply strategy is proposed to improve sensitivity and energy efficiency. Low-Q decoupling technique is proposed to improve supply interference tolerance, resulting in 2.6 times eye-opening in the eye diagram compared to the traditional one without low-Q decoupling. By co-designing the low-noise amplifier, envelope detector, and baseband amplifier, a prototype with proposed techniques was fabricated in a 65-nm LP CMOS process. Measurement results show that it achieves a maximum data rate of 16 Gbps with an energy efficiency of 0.62 pJ/bit and a sensitivity of -21.8 dBm, providing a high dynamic range, energy-efficient and interference robust solution for massive short-range interconnects.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 6","pages":"818-822"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.62-pJ/Bit 60-GHz OOK Receiver With Supply Interference Tolerance for Short-Range Interconnects\",\"authors\":\"Junhong Liu;Yi Wu;Guangyin Feng;Rongbin Liu;Shaoxian Li;Chuan Hu;Xiuyin Zhang\",\"doi\":\"10.1109/TCSII.2025.3560305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief presents an energy-efficient 60-GHz OOK receiver for massive short-range interconnects, addressing two key issues including interference in power distribution network and trade-off between sensitivity and energy efficiency. Variable gain low-noise amplifier with custom-designed bias-supply strategy is proposed to improve sensitivity and energy efficiency. Low-Q decoupling technique is proposed to improve supply interference tolerance, resulting in 2.6 times eye-opening in the eye diagram compared to the traditional one without low-Q decoupling. By co-designing the low-noise amplifier, envelope detector, and baseband amplifier, a prototype with proposed techniques was fabricated in a 65-nm LP CMOS process. Measurement results show that it achieves a maximum data rate of 16 Gbps with an energy efficiency of 0.62 pJ/bit and a sensitivity of -21.8 dBm, providing a high dynamic range, energy-efficient and interference robust solution for massive short-range interconnects.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 6\",\"pages\":\"818-822\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964303/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964303/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于大规模短距离互连的节能60ghz OOK接收器,解决了配电网络干扰和灵敏度与能效之间的权衡这两个关键问题。采用自定义偏置供电策略的变增益低噪声放大器提高了灵敏度和能效。提出了低q去耦技术,提高了电源干扰容错性,使眼图的开眼量是传统无低q去耦时的2.6倍。通过共同设计低噪声放大器、包络检测器和基带放大器,在65nm LP CMOS工艺中制作了具有上述技术的原型。测量结果表明,最大数据速率可达16 Gbps,能量效率为0.62 pJ/bit,灵敏度为-21.8 dBm,为大规模短距离互连提供了高动态范围、节能和抗干扰的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 0.62-pJ/Bit 60-GHz OOK Receiver With Supply Interference Tolerance for Short-Range Interconnects
This brief presents an energy-efficient 60-GHz OOK receiver for massive short-range interconnects, addressing two key issues including interference in power distribution network and trade-off between sensitivity and energy efficiency. Variable gain low-noise amplifier with custom-designed bias-supply strategy is proposed to improve sensitivity and energy efficiency. Low-Q decoupling technique is proposed to improve supply interference tolerance, resulting in 2.6 times eye-opening in the eye diagram compared to the traditional one without low-Q decoupling. By co-designing the low-noise amplifier, envelope detector, and baseband amplifier, a prototype with proposed techniques was fabricated in a 65-nm LP CMOS process. Measurement results show that it achieves a maximum data rate of 16 Gbps with an energy efficiency of 0.62 pJ/bit and a sensitivity of -21.8 dBm, providing a high dynamic range, energy-efficient and interference robust solution for massive short-range interconnects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信