{"title":"采用浮动中电平的vm端PAM-3发射机,增强了低功耗存储器接口的信号完整性和能量效率","authors":"Chanheum Han;Ki-Soo Lee;Jun-Cheol Lee;Joo-Hyung Chae","doi":"10.1109/TCSI.2025.3552405","DOIUrl":null,"url":null,"abstract":"This paper introduces a three-level pulse amplitude modulation single-ended transmitter using V<sub>M</sub> (half of <inline-formula> <tex-math>$\\text{V}_{\\mathrm {DDQ}}$ </tex-math></inline-formula>) termination, designed for next-generation low-power memory interfaces. The proposed signaling strategy, based on the V<sub>M</sub> termination, improves signal integrity by reducing signaling current by 41.05% while maintaining the same voltage swing compared to existing V<sub>SS</sub>-terminated structures for low-power memory interfaces. This reduction in signaling current effectively decreases simultaneous switching output noise. Additionally, this approach alleviates the voltage headroom limitation and enables pre-emphasis adoption, resulting in a larger voltage swing and reduced power consumption compared to de-emphasis. The voltage difference between the drain and source of each pull-up and pull-down driver is balanced, achieving a good ratio of level mismatch (RLM). Moreover, the three-step ZQ calibration and transmission gate-based receiver-side V<sub>M</sub> termination help achieve accurate on-resistance and improve output linearity, reducing signal reflection. The prototype chip, fabricated using a 65-nm CMOS process, has an area of 0.0184 mm<sup>2</sup>. It achieves a data rate of 22.5 Gb/s with an energy efficiency of 0.86 pJ/bit and a measured RLM of 99.2%.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 6","pages":"2653-2663"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A VM-Terminated PAM-3 Transmitter Using Floating Middle Level With Enhanced Signal Integrity and Energy Efficiency for Low-Power Memory Interfaces\",\"authors\":\"Chanheum Han;Ki-Soo Lee;Jun-Cheol Lee;Joo-Hyung Chae\",\"doi\":\"10.1109/TCSI.2025.3552405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a three-level pulse amplitude modulation single-ended transmitter using V<sub>M</sub> (half of <inline-formula> <tex-math>$\\\\text{V}_{\\\\mathrm {DDQ}}$ </tex-math></inline-formula>) termination, designed for next-generation low-power memory interfaces. The proposed signaling strategy, based on the V<sub>M</sub> termination, improves signal integrity by reducing signaling current by 41.05% while maintaining the same voltage swing compared to existing V<sub>SS</sub>-terminated structures for low-power memory interfaces. This reduction in signaling current effectively decreases simultaneous switching output noise. Additionally, this approach alleviates the voltage headroom limitation and enables pre-emphasis adoption, resulting in a larger voltage swing and reduced power consumption compared to de-emphasis. The voltage difference between the drain and source of each pull-up and pull-down driver is balanced, achieving a good ratio of level mismatch (RLM). Moreover, the three-step ZQ calibration and transmission gate-based receiver-side V<sub>M</sub> termination help achieve accurate on-resistance and improve output linearity, reducing signal reflection. The prototype chip, fabricated using a 65-nm CMOS process, has an area of 0.0184 mm<sup>2</sup>. It achieves a data rate of 22.5 Gb/s with an energy efficiency of 0.86 pJ/bit and a measured RLM of 99.2%.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"72 6\",\"pages\":\"2653-2663\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938983/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938983/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A VM-Terminated PAM-3 Transmitter Using Floating Middle Level With Enhanced Signal Integrity and Energy Efficiency for Low-Power Memory Interfaces
This paper introduces a three-level pulse amplitude modulation single-ended transmitter using VM (half of $\text{V}_{\mathrm {DDQ}}$ ) termination, designed for next-generation low-power memory interfaces. The proposed signaling strategy, based on the VM termination, improves signal integrity by reducing signaling current by 41.05% while maintaining the same voltage swing compared to existing VSS-terminated structures for low-power memory interfaces. This reduction in signaling current effectively decreases simultaneous switching output noise. Additionally, this approach alleviates the voltage headroom limitation and enables pre-emphasis adoption, resulting in a larger voltage swing and reduced power consumption compared to de-emphasis. The voltage difference between the drain and source of each pull-up and pull-down driver is balanced, achieving a good ratio of level mismatch (RLM). Moreover, the three-step ZQ calibration and transmission gate-based receiver-side VM termination help achieve accurate on-resistance and improve output linearity, reducing signal reflection. The prototype chip, fabricated using a 65-nm CMOS process, has an area of 0.0184 mm2. It achieves a data rate of 22.5 Gb/s with an energy efficiency of 0.86 pJ/bit and a measured RLM of 99.2%.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.