具有自偏置单极刺激驱动器和多输出电荷泵转换器的16通道神经刺激IC在低压CMOS中实现25.44 mw /mm2功率密度

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pengfei Han;Yi Ding;Dingfu He;Xinqin Guo;Shiyv Wu;Hongming Lyu
{"title":"具有自偏置单极刺激驱动器和多输出电荷泵转换器的16通道神经刺激IC在低压CMOS中实现25.44 mw /mm2功率密度","authors":"Pengfei Han;Yi Ding;Dingfu He;Xinqin Guo;Shiyv Wu;Hongming Lyu","doi":"10.1109/TCSI.2025.3562150","DOIUrl":null,"url":null,"abstract":"Electrical neuromodulation has shown superior therapeutic outcomes compared with pharmacological interventions alone. This work introduces a 16-channel neurostimulation IC featuring transistor-stacked monopolar stimulation drivers in standard CMOS technology. With a self-adaptive biasing scheme, the stimulation driver ensures operational safety across all load conditions under the ±6-V voltage compliance and successfully addresses potential leakage issues in prior work. Each driver features 8-bit current control with <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>A resolution. An on-chip charge-pump system generates ±6-V supplies using a novel multiple-output pulse-skipping modulation scheme and achieves a remarkable power density of 25.44 mW/mm<sup>2</sup> through the systematic optimization of sub-converters. The 16-channel neurostimulation IC is fabricated in a 180-nm standard CMOS technology, occupying a total pad-included area of 3 mm<sup>2</sup>. The compactness and process compatibility of the design demonstrate the potential for enabling next-generation high-channel-count neural interfaces.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 6","pages":"2556-2565"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 16-Channel Neurostimulation IC With Self-Biased Monopolar Stimulus Drivers and a Multiple-Output Charge-Pump Converter Achieving 25.44-mW/mm2 Power Density in Low-Voltage CMOS\",\"authors\":\"Pengfei Han;Yi Ding;Dingfu He;Xinqin Guo;Shiyv Wu;Hongming Lyu\",\"doi\":\"10.1109/TCSI.2025.3562150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical neuromodulation has shown superior therapeutic outcomes compared with pharmacological interventions alone. This work introduces a 16-channel neurostimulation IC featuring transistor-stacked monopolar stimulation drivers in standard CMOS technology. With a self-adaptive biasing scheme, the stimulation driver ensures operational safety across all load conditions under the ±6-V voltage compliance and successfully addresses potential leakage issues in prior work. Each driver features 8-bit current control with <inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>A resolution. An on-chip charge-pump system generates ±6-V supplies using a novel multiple-output pulse-skipping modulation scheme and achieves a remarkable power density of 25.44 mW/mm<sup>2</sup> through the systematic optimization of sub-converters. The 16-channel neurostimulation IC is fabricated in a 180-nm standard CMOS technology, occupying a total pad-included area of 3 mm<sup>2</sup>. The compactness and process compatibility of the design demonstrate the potential for enabling next-generation high-channel-count neural interfaces.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"72 6\",\"pages\":\"2556-2565\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10981421/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10981421/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

与单独的药物干预相比,电神经调节显示出更好的治疗效果。本工作介绍了一种采用标准CMOS技术的具有晶体管堆叠单极刺激驱动器的16通道神经刺激IC。通过自适应偏置方案,该增产驱动程序确保了±6 v电压下所有负载条件下的操作安全,并成功解决了之前工作中潜在的泄漏问题。每个驱动程序具有8位电流控制,分辨率为$1~\mu $ A。片上电荷泵系统采用新颖的多输出跳脉冲调制方案产生±6 v电源,并通过对子变流器的系统优化实现了25.44 mW/mm2的功率密度。这款16通道神经刺激集成电路采用180nm标准CMOS技术制造,总占地面积为3mm2。该设计的紧凑性和工艺兼容性显示了实现下一代高通道计数神经接口的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 16-Channel Neurostimulation IC With Self-Biased Monopolar Stimulus Drivers and a Multiple-Output Charge-Pump Converter Achieving 25.44-mW/mm2 Power Density in Low-Voltage CMOS
Electrical neuromodulation has shown superior therapeutic outcomes compared with pharmacological interventions alone. This work introduces a 16-channel neurostimulation IC featuring transistor-stacked monopolar stimulation drivers in standard CMOS technology. With a self-adaptive biasing scheme, the stimulation driver ensures operational safety across all load conditions under the ±6-V voltage compliance and successfully addresses potential leakage issues in prior work. Each driver features 8-bit current control with $1~\mu $ A resolution. An on-chip charge-pump system generates ±6-V supplies using a novel multiple-output pulse-skipping modulation scheme and achieves a remarkable power density of 25.44 mW/mm2 through the systematic optimization of sub-converters. The 16-channel neurostimulation IC is fabricated in a 180-nm standard CMOS technology, occupying a total pad-included area of 3 mm2. The compactness and process compatibility of the design demonstrate the potential for enabling next-generation high-channel-count neural interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信