{"title":"超越标准阻抗匹配技术的有源天线:概念与应用","authors":"Constant M. A. Niamien","doi":"10.1109/OJAP.2025.3550271","DOIUrl":null,"url":null,"abstract":"This paper presents a new design concept for improving active antennas’ performances beyond the standard impedance matching technique. The proposed approach expands the mismatch at the antenna-amplifier interface to create a voltage excess, transferred to the matched output receiver using a voltage-type amplifier instead of a power type. Compared with a standard dual-input-output matching, this leads to comparable bandwidth and DC consumption but significantly improves the peak gain, gain-bandwidth-product (GBWP), stability, and noise figure. Experiments with a conventional dipole antenna confirm an improvement factor near two on gain and GBWP. Stability improves by 10°, tending to reach the reference value of 60° phase margin for sound systems. Also, the noise figure significantly decreases by 4.5 dB on average. In addition, the newly introduced performance metric, typically normalized gain-bandwidth-product (NGBWP), dividing GBWP by the average amplifying stage’s gain and the passive antenna’s GBWP, is NGBWP <inline-formula> <tex-math>${=}6.84$ </tex-math></inline-formula>, far higher than the existing works peaking at 2. Finally, the proposed active dipole shows GBWP <inline-formula> <tex-math>${=}2.68$ </tex-math></inline-formula>, which is 15 times the passive dipole. These attractive characteristics make the present approach suitable for most wireless systems.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"821-836"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10922756","citationCount":"0","resultStr":"{\"title\":\"Active Antennas Beyond the Standard Impedance Matching Technique: Concepts and Applications\",\"authors\":\"Constant M. A. Niamien\",\"doi\":\"10.1109/OJAP.2025.3550271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new design concept for improving active antennas’ performances beyond the standard impedance matching technique. The proposed approach expands the mismatch at the antenna-amplifier interface to create a voltage excess, transferred to the matched output receiver using a voltage-type amplifier instead of a power type. Compared with a standard dual-input-output matching, this leads to comparable bandwidth and DC consumption but significantly improves the peak gain, gain-bandwidth-product (GBWP), stability, and noise figure. Experiments with a conventional dipole antenna confirm an improvement factor near two on gain and GBWP. Stability improves by 10°, tending to reach the reference value of 60° phase margin for sound systems. Also, the noise figure significantly decreases by 4.5 dB on average. In addition, the newly introduced performance metric, typically normalized gain-bandwidth-product (NGBWP), dividing GBWP by the average amplifying stage’s gain and the passive antenna’s GBWP, is NGBWP <inline-formula> <tex-math>${=}6.84$ </tex-math></inline-formula>, far higher than the existing works peaking at 2. Finally, the proposed active dipole shows GBWP <inline-formula> <tex-math>${=}2.68$ </tex-math></inline-formula>, which is 15 times the passive dipole. These attractive characteristics make the present approach suitable for most wireless systems.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"6 3\",\"pages\":\"821-836\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10922756\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10922756/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10922756/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Active Antennas Beyond the Standard Impedance Matching Technique: Concepts and Applications
This paper presents a new design concept for improving active antennas’ performances beyond the standard impedance matching technique. The proposed approach expands the mismatch at the antenna-amplifier interface to create a voltage excess, transferred to the matched output receiver using a voltage-type amplifier instead of a power type. Compared with a standard dual-input-output matching, this leads to comparable bandwidth and DC consumption but significantly improves the peak gain, gain-bandwidth-product (GBWP), stability, and noise figure. Experiments with a conventional dipole antenna confirm an improvement factor near two on gain and GBWP. Stability improves by 10°, tending to reach the reference value of 60° phase margin for sound systems. Also, the noise figure significantly decreases by 4.5 dB on average. In addition, the newly introduced performance metric, typically normalized gain-bandwidth-product (NGBWP), dividing GBWP by the average amplifying stage’s gain and the passive antenna’s GBWP, is NGBWP ${=}6.84$ , far higher than the existing works peaking at 2. Finally, the proposed active dipole shows GBWP ${=}2.68$ , which is 15 times the passive dipole. These attractive characteristics make the present approach suitable for most wireless systems.