随机调频雷达波形的可分性分析

Matthew B. Heintzelman;Daniel B. Herr;Charles A. Mohr;Shannon D. Blunt;Cenk Sahin;Andrew Kordik
{"title":"随机调频雷达波形的可分性分析","authors":"Matthew B. Heintzelman;Daniel B. Herr;Charles A. Mohr;Shannon D. Blunt;Cenk Sahin;Andrew Kordik","doi":"10.1109/TRS.2025.3564236","DOIUrl":null,"url":null,"abstract":"This work seeks to elucidate the relationship between interfering frequency-modulated (FM) radar waveforms and their observed separability. A statistical and analytical framework is developed through which the average separability is determined as a function of the mutual time–bandwidth product between the interfering waveforms. The analytically derived predictor for waveform separability is then compared to a long-observed heuristic. Since random waveforms exhibit stochastic cross correlations, the maximum deviation above the analytically derived predictor is also examined. High-dimensional Monte Carlo simulations are used to numerically validate the analytical results.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"768-788"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separability Analysis of Random FM Radar Waveforms\",\"authors\":\"Matthew B. Heintzelman;Daniel B. Herr;Charles A. Mohr;Shannon D. Blunt;Cenk Sahin;Andrew Kordik\",\"doi\":\"10.1109/TRS.2025.3564236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work seeks to elucidate the relationship between interfering frequency-modulated (FM) radar waveforms and their observed separability. A statistical and analytical framework is developed through which the average separability is determined as a function of the mutual time–bandwidth product between the interfering waveforms. The analytically derived predictor for waveform separability is then compared to a long-observed heuristic. Since random waveforms exhibit stochastic cross correlations, the maximum deviation above the analytically derived predictor is also examined. High-dimensional Monte Carlo simulations are used to numerically validate the analytical results.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"768-788\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10976448/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在阐明干扰调频(FM)雷达波形与观测到的可分性之间的关系。建立了一个统计和分析框架,通过该框架确定平均可分性作为干扰波形之间相互时间带宽积的函数。然后,将解析导出的波形可分性预测器与长期观察到的启发式进行比较。由于随机波形表现出随机相互关系,因此还检查了解析导出的预测器上面的最大偏差。采用高维蒙特卡罗模拟对分析结果进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separability Analysis of Random FM Radar Waveforms
This work seeks to elucidate the relationship between interfering frequency-modulated (FM) radar waveforms and their observed separability. A statistical and analytical framework is developed through which the average separability is determined as a function of the mutual time–bandwidth product between the interfering waveforms. The analytically derived predictor for waveform separability is then compared to a long-observed heuristic. Since random waveforms exhibit stochastic cross correlations, the maximum deviation above the analytically derived predictor is also examined. High-dimensional Monte Carlo simulations are used to numerically validate the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信