{"title":"分数阶p-拉普拉斯算子在RN上的半正子问题","authors":"Nirjan Biswas , Rohit Kumar","doi":"10.1016/j.jmaa.2025.129703","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></math></span> we find a positive solution to the following class of semipositone problems associated with the fractional <em>p</em>-Laplace operator:<span><span><span>(SP)</span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> is a positive function, <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> is a parameter and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>a</mi></math></span> for <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for <span><math><mi>t</mi><mo>≤</mo><mo>−</mo><mn>1</mn></math></span>, where <em>f</em> is a non-negative continuous function on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> satisfies <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of <em>a</em>, we obtain the existence of a mountain pass solution to (SP) in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Then, we prove mountain pass solutions are uniformly bounded with respect to <em>a</em>, over <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> for every <span><math><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo></mrow></math></span>. In addition, if <span><math><mi>p</mi><mo>></mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></mfrac></math></span>, we establish that (SP) admits a non-negative mountain pass solution for each <em>a</em> near zero. Finally, under the assumption <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>B</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac></math></span> for <span><math><mi>B</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math></span>, and <span><math><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow></math></span>, we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129703"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semipositone problems over RN for the fractional p-Laplace operator\",\"authors\":\"Nirjan Biswas , Rohit Kumar\",\"doi\":\"10.1016/j.jmaa.2025.129703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <span><math><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></math></span> we find a positive solution to the following class of semipositone problems associated with the fractional <em>p</em>-Laplace operator:<span><span><span>(SP)</span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> is a positive function, <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> is a parameter and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>a</mi></math></span> for <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for <span><math><mi>t</mi><mo>≤</mo><mo>−</mo><mn>1</mn></math></span>, where <em>f</em> is a non-negative continuous function on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> satisfies <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of <em>a</em>, we obtain the existence of a mountain pass solution to (SP) in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Then, we prove mountain pass solutions are uniformly bounded with respect to <em>a</em>, over <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> for every <span><math><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo></mrow></math></span>. In addition, if <span><math><mi>p</mi><mo>></mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></mfrac></math></span>, we establish that (SP) admits a non-negative mountain pass solution for each <em>a</em> near zero. Finally, under the assumption <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>B</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac></math></span> for <span><math><mi>B</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math></span>, and <span><math><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow></math></span>, we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129703\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004846\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004846","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On semipositone problems over RN for the fractional p-Laplace operator
For , and we find a positive solution to the following class of semipositone problems associated with the fractional p-Laplace operator:(SP) where is a positive function, is a parameter and is defined as for , for , and for , where f is a non-negative continuous function on satisfies with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of a, we obtain the existence of a mountain pass solution to (SP) in . Then, we prove mountain pass solutions are uniformly bounded with respect to a, over for every . In addition, if , we establish that (SP) admits a non-negative mountain pass solution for each a near zero. Finally, under the assumption for , and , we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.