分数阶p-拉普拉斯算子在RN上的半正子问题

IF 1.2 3区 数学 Q1 MATHEMATICS
Nirjan Biswas , Rohit Kumar
{"title":"分数阶p-拉普拉斯算子在RN上的半正子问题","authors":"Nirjan Biswas ,&nbsp;Rohit Kumar","doi":"10.1016/j.jmaa.2025.129703","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></math></span> we find a positive solution to the following class of semipositone problems associated with the fractional <em>p</em>-Laplace operator:<span><span><span>(SP)</span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> is a positive function, <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> is a parameter and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>a</mi></math></span> for <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for <span><math><mi>t</mi><mo>≤</mo><mo>−</mo><mn>1</mn></math></span>, where <em>f</em> is a non-negative continuous function on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> satisfies <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of <em>a</em>, we obtain the existence of a mountain pass solution to (SP) in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Then, we prove mountain pass solutions are uniformly bounded with respect to <em>a</em>, over <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> for every <span><math><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo></mrow></math></span>. In addition, if <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></mfrac></math></span>, we establish that (SP) admits a non-negative mountain pass solution for each <em>a</em> near zero. Finally, under the assumption <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>B</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac></math></span> for <span><math><mi>B</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math></span>, and <span><math><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow></math></span>, we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129703"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semipositone problems over RN for the fractional p-Laplace operator\",\"authors\":\"Nirjan Biswas ,&nbsp;Rohit Kumar\",\"doi\":\"10.1016/j.jmaa.2025.129703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <span><math><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></math></span> we find a positive solution to the following class of semipositone problems associated with the fractional <em>p</em>-Laplace operator:<span><span><span>(SP)</span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> is a positive function, <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> is a parameter and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>a</mi></math></span> for <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for <span><math><mi>t</mi><mo>≤</mo><mo>−</mo><mn>1</mn></math></span>, where <em>f</em> is a non-negative continuous function on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> satisfies <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of <em>a</em>, we obtain the existence of a mountain pass solution to (SP) in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Then, we prove mountain pass solutions are uniformly bounded with respect to <em>a</em>, over <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> for every <span><math><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo></mrow></math></span>. In addition, if <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></mfrac></math></span>, we establish that (SP) admits a non-negative mountain pass solution for each <em>a</em> near zero. Finally, under the assumption <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>B</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac></math></span> for <span><math><mi>B</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math></span>, and <span><math><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mi>s</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow></math></span>, we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129703\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004846\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004846","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于N≥1,s∈(0,1),p∈(1,Ns),我们找到了以下一类与分数阶p-拉普拉斯算子相关的半正数问题的一个正解:(SP)(−Δ)psu=g(x)fa(u)在RN中,其中g∈L1(RN)∩L∞(RN)是一个正函数,a>;0是一个参数,fa∈C(R)定义为,当t≥0时fa(t)=f(t)−a,当t∈[- 1,0]时fa(t)= - a(t+1),当t≤- 1时fa(t)=0,其中f是一个非负连续函数在[0,∞)上满足f(0)=0,具有亚临界和Ambrosetti-Rabinowitz型增长。根据a的取值范围,我们得到了Ds,p(RN)中(SP)的山口解的存在性。然后,我们证明了对于每个r∈[NpN−sp,∞],山口解对a在Lr(RN)上是一致有界的。此外,当p>;2NN+2s时,我们建立了(SP)对于每一个接近零的a都允许一个非负的山口解。最后,在假设g(x)≤B|x|β(p−1)+sp,对于B>;0,x≠0,β∈(N−spp−1,Np−1),我们导出了(sp)的显式正径向子解,并证明了(sp)的非负解在RN中为正a.e.。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On semipositone problems over RN for the fractional p-Laplace operator
For N1,s(0,1), and p(1,Ns) we find a positive solution to the following class of semipositone problems associated with the fractional p-Laplace operator:(SP)(Δ)psu=g(x)fa(u) in RN, where gL1(RN)L(RN) is a positive function, a>0 is a parameter and faC(R) is defined as fa(t)=f(t)a for t0, fa(t)=a(t+1) for t[1,0], and fa(t)=0 for t1, where f is a non-negative continuous function on [0,) satisfies f(0)=0 with subcritical and Ambrosetti-Rabinowitz type growth. Depending on the range of a, we obtain the existence of a mountain pass solution to (SP) in Ds,p(RN). Then, we prove mountain pass solutions are uniformly bounded with respect to a, over Lr(RN) for every r[NpNsp,]. In addition, if p>2NN+2s, we establish that (SP) admits a non-negative mountain pass solution for each a near zero. Finally, under the assumption g(x)B|x|β(p1)+sp for B>0,x0, and β(Nspp1,Np1), we derive an explicit positive radial subsolution to (SP) and show that the non-negative solution is positive a.e. in RN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信