{"title":"度量空间中的Takagi-van der Waerden函数及其Lipschitz导数","authors":"Oleksandr V. Maslyuchenko , Ziemowit M. Wójcicki","doi":"10.1016/j.jmaa.2025.129726","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the Takagi–van der Waerden function with parameters <span><math><mi>a</mi><mo>></mo><mi>b</mi><mo>></mo><mn>0</mn></math></span> by setting <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a maximal <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac></math></span>-separated set in a metric space <em>X</em>. So, if <span><math><mi>X</mi><mo>=</mo><mi>R</mi></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>Z</mi></math></span> then <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the Takagi function and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>10</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the van der Waerden function which are well-known examples of nowhere differentiable functions. Then we prove that the big Lipschitz derivative <span><math><mrow><mi>Lip</mi></mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>a</mi><mo>></mo><mi>b</mi><mo>></mo><mn>2</mn></math></span> and <em>x</em> is a non-isolated point of <em>X</em>. Moreover, if the shell porosity <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo><</mo><mi>λ</mi><mo><</mo><mn>1</mn></math></span> for some <em>λ</em> and each non-isolated point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span> then the little Lipschitz derivative <span><math><mrow><mi>lip</mi></mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> for large enough <span><math><mi>a</mi><mo>></mo><mi>b</mi></math></span> and any non-isolated point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. In particular, this is true for any normed space. Finally, we prove that for any open set <em>A</em> in a metric (normed) space <em>X</em> without isolated points there exists a continuous function <em>f</em> such that <span><math><mrow><mi>Lip</mi></mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> (and <span><math><mrow><mi>lip</mi></mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>) exactly on <em>A</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129726"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Takagi–van der Waerden functions in metric spaces and their Lipschitz derivatives\",\"authors\":\"Oleksandr V. Maslyuchenko , Ziemowit M. Wójcicki\",\"doi\":\"10.1016/j.jmaa.2025.129726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the Takagi–van der Waerden function with parameters <span><math><mi>a</mi><mo>></mo><mi>b</mi><mo>></mo><mn>0</mn></math></span> by setting <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a maximal <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac></math></span>-separated set in a metric space <em>X</em>. So, if <span><math><mi>X</mi><mo>=</mo><mi>R</mi></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>Z</mi></math></span> then <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the Takagi function and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>10</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the van der Waerden function which are well-known examples of nowhere differentiable functions. Then we prove that the big Lipschitz derivative <span><math><mrow><mi>Lip</mi></mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>a</mi><mo>></mo><mi>b</mi><mo>></mo><mn>2</mn></math></span> and <em>x</em> is a non-isolated point of <em>X</em>. Moreover, if the shell porosity <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo><</mo><mi>λ</mi><mo><</mo><mn>1</mn></math></span> for some <em>λ</em> and each non-isolated point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span> then the little Lipschitz derivative <span><math><mrow><mi>lip</mi></mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> for large enough <span><math><mi>a</mi><mo>></mo><mi>b</mi></math></span> and any non-isolated point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. In particular, this is true for any normed space. Finally, we prove that for any open set <em>A</em> in a metric (normed) space <em>X</em> without isolated points there exists a continuous function <em>f</em> such that <span><math><mrow><mi>Lip</mi></mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> (and <span><math><mrow><mi>lip</mi></mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>) exactly on <em>A</em>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129726\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005074\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们通过设fa,b(x)=∑n=1∞bnd(x,Sn)引入参数为a>;b>;0的Takagi - van der Waerden函数,其中Sn是度量空间x中的一个极大1分离集,因此,如果x =R,Sn =1anZ,则f2,1是Takagi函数,f10,1是van der Waerden函数,它们是众所周知的无处可微函数的例子。然后证明了当a>;b>;2和x是x的非孤立点时,大Lipschitz导数Lipfa,b(x)=+∞。并且,如果壳孔隙度ps(x,x)<λ<;1对于某些λ和每个非孤立点x∈x,则对于足够大的a>;b和任何非孤立点x∈x,小Lipschitz导数Lipfa,b(x)=+∞。特别地,这对任何赋范空间都成立。最后,我们证明了在无孤立点的度量(赋范)空间X中,对于任意开集A,存在一个连续函数f,使得Lipf(X)在A上恰好=+∞(且Lipf(X)=+∞)。
Takagi–van der Waerden functions in metric spaces and their Lipschitz derivatives
We introduce the Takagi–van der Waerden function with parameters by setting , where is a maximal -separated set in a metric space X. So, if and then is the Takagi function and is the van der Waerden function which are well-known examples of nowhere differentiable functions. Then we prove that the big Lipschitz derivative if and x is a non-isolated point of X. Moreover, if the shell porosity for some λ and each non-isolated point then the little Lipschitz derivative for large enough and any non-isolated point . In particular, this is true for any normed space. Finally, we prove that for any open set A in a metric (normed) space X without isolated points there exists a continuous function f such that (and ) exactly on A.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.