一类具有体积填充的交叉扩散模型的弱-强唯一性

IF 1.2 3区 数学 Q1 MATHEMATICS
Ling Liu
{"title":"一类具有体积填充的交叉扩散模型的弱-强唯一性","authors":"Ling Liu","doi":"10.1016/j.jmaa.2025.129727","DOIUrl":null,"url":null,"abstract":"<div><div>The weak-strong uniqueness for solutions to a special class of parabolic cross-diffusion systems with volume filling in a bounded domain with no-flux boundary conditions is proved. The diffusion matrix is neither symmetric nor positive definite, but the system possesses a formal gradient-flow or entropy structure. It is shown that any weak solution coincides with a “strong” solution with the same initial data, as long as the “strong” solution exists. The proof is mainly based on the use of the relative entropy modified by small parameters <em>ε</em> and <em>δ</em>, combined with some analytical techniques.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129727"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak-strong uniqueness for a specific class of cross-diffusion models with volume filling\",\"authors\":\"Ling Liu\",\"doi\":\"10.1016/j.jmaa.2025.129727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The weak-strong uniqueness for solutions to a special class of parabolic cross-diffusion systems with volume filling in a bounded domain with no-flux boundary conditions is proved. The diffusion matrix is neither symmetric nor positive definite, but the system possesses a formal gradient-flow or entropy structure. It is shown that any weak solution coincides with a “strong” solution with the same initial data, as long as the “strong” solution exists. The proof is mainly based on the use of the relative entropy modified by small parameters <em>ε</em> and <em>δ</em>, combined with some analytical techniques.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129727\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005086\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005086","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了一类具有体积填充的特殊抛物型交叉扩散系统在无通量边界条件有界区域上解的弱-强唯一性。扩散矩阵不是对称的,也不是正定的,但系统具有正式的梯度流或熵结构。证明了只要“强”解存在,任何弱解都与具有相同初始数据的“强”解重合。证明主要是利用ε和δ小参数修正的相对熵,并结合一些分析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak-strong uniqueness for a specific class of cross-diffusion models with volume filling
The weak-strong uniqueness for solutions to a special class of parabolic cross-diffusion systems with volume filling in a bounded domain with no-flux boundary conditions is proved. The diffusion matrix is neither symmetric nor positive definite, but the system possesses a formal gradient-flow or entropy structure. It is shown that any weak solution coincides with a “strong” solution with the same initial data, as long as the “strong” solution exists. The proof is mainly based on the use of the relative entropy modified by small parameters ε and δ, combined with some analytical techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信