{"title":"度量度量空间上Sobolev类中生成嵌入算子的映射","authors":"Alexander Menovschikov , Alexander Ukhlov","doi":"10.1016/j.jmaa.2025.129716","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study homeomorphisms <span><math><mi>φ</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> that generate embedding operators in Sobolev classes on metric measure spaces <em>X</em> by the composition rule <span><math><msup><mrow><mi>φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>∘</mo><mi>φ</mi></math></span>. In turn, this leads to Sobolev type embedding theorems for a wide class of domains <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊂</mo><mi>X</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129716"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On mappings generating embedding operators in Sobolev classes on metric measure spaces\",\"authors\":\"Alexander Menovschikov , Alexander Ukhlov\",\"doi\":\"10.1016/j.jmaa.2025.129716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study homeomorphisms <span><math><mi>φ</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> that generate embedding operators in Sobolev classes on metric measure spaces <em>X</em> by the composition rule <span><math><msup><mrow><mi>φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>∘</mo><mi>φ</mi></math></span>. In turn, this leads to Sobolev type embedding theorems for a wide class of domains <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊂</mo><mi>X</mi></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129716\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004974\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004974","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On mappings generating embedding operators in Sobolev classes on metric measure spaces
In this article, we study homeomorphisms that generate embedding operators in Sobolev classes on metric measure spaces X by the composition rule . In turn, this leads to Sobolev type embedding theorems for a wide class of domains .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.