用于高性能柔性薄膜晶体管的等离子体辐照半铁电体

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyun Yeol Rho , Arindam Bala , Anamika Sen , Uisik Jeong , Jimin Kim , Pavan Pujar , Sunkook Kim
{"title":"用于高性能柔性薄膜晶体管的等离子体辐照半铁电体","authors":"Hyun Yeol Rho ,&nbsp;Arindam Bala ,&nbsp;Anamika Sen ,&nbsp;Uisik Jeong ,&nbsp;Jimin Kim ,&nbsp;Pavan Pujar ,&nbsp;Sunkook Kim","doi":"10.1016/j.mtnano.2025.100639","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating unconventional HfO<sub>2</sub>-based ferroelectrics in thin film transistors (TFTs) has proven effective in enhancing performance by stabilizing negative capacitance (NC). This is achieved by incorporating the ferroelectric in series with a high-permittivity dielectric as a passive TFT component. However, implementing this on flexible, temperature-sensitive substrates presents significant challenges. The primary focus in TFTs on flexible substrates is their fabrication with a considerably low thermal budget to avoid damaging the underlying substrate. Herein, we introduce an approach to stabilize the desired ferroelectric polar phase of hafnium zirconium oxide (Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>, HZO) through superficial plasma treatment in the argon environment. Plasma energizes Ar<sup>+</sup> ions, whose bombardment induces oxygen vacancies, thereby stabilizing the desired orthorhombic phase at low temperatures. The IGZO-channel TFTs incorporating HZO/HfO<sub>2</sub> passive stacks exhibit a substantial enhancement in subthreshold swing (SS), achieving a 72 % reduction from 147 mV/dec to 41 mV/dec, along with a notable increase in on-state currents (<em>I</em><sub>on</sub>) compared to conventional TFTs utilizing only HfO<sub>2</sub> dielectrics. The field-effect mobility (μ) significantly improves from 5.7 ± 0.2 to 28.8 ± 6.2 cm<sup>2</sup>/V·s. Flexible TFTs fabricated on polyimide substrates also show excellent mechanical stability, maintaining consistent <em>I</em><sub>on</sub> even after 10,000 bending cycles. Moreover, these TFTs exhibit enhanced μ of 72 ± 13.5 cm<sup>2</sup>/V·s in the flat state and 33.9 ± 3.8 cm<sup>2</sup>/V·s under bending—both notably higher than those of TFTs without the HZO-assisted NC effect.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"31 ","pages":"Article 100639"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-irradiated hafnia ferroelectrics for high-performance flexible thin film transistors\",\"authors\":\"Hyun Yeol Rho ,&nbsp;Arindam Bala ,&nbsp;Anamika Sen ,&nbsp;Uisik Jeong ,&nbsp;Jimin Kim ,&nbsp;Pavan Pujar ,&nbsp;Sunkook Kim\",\"doi\":\"10.1016/j.mtnano.2025.100639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrating unconventional HfO<sub>2</sub>-based ferroelectrics in thin film transistors (TFTs) has proven effective in enhancing performance by stabilizing negative capacitance (NC). This is achieved by incorporating the ferroelectric in series with a high-permittivity dielectric as a passive TFT component. However, implementing this on flexible, temperature-sensitive substrates presents significant challenges. The primary focus in TFTs on flexible substrates is their fabrication with a considerably low thermal budget to avoid damaging the underlying substrate. Herein, we introduce an approach to stabilize the desired ferroelectric polar phase of hafnium zirconium oxide (Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>, HZO) through superficial plasma treatment in the argon environment. Plasma energizes Ar<sup>+</sup> ions, whose bombardment induces oxygen vacancies, thereby stabilizing the desired orthorhombic phase at low temperatures. The IGZO-channel TFTs incorporating HZO/HfO<sub>2</sub> passive stacks exhibit a substantial enhancement in subthreshold swing (SS), achieving a 72 % reduction from 147 mV/dec to 41 mV/dec, along with a notable increase in on-state currents (<em>I</em><sub>on</sub>) compared to conventional TFTs utilizing only HfO<sub>2</sub> dielectrics. The field-effect mobility (μ) significantly improves from 5.7 ± 0.2 to 28.8 ± 6.2 cm<sup>2</sup>/V·s. Flexible TFTs fabricated on polyimide substrates also show excellent mechanical stability, maintaining consistent <em>I</em><sub>on</sub> even after 10,000 bending cycles. Moreover, these TFTs exhibit enhanced μ of 72 ± 13.5 cm<sup>2</sup>/V·s in the flat state and 33.9 ± 3.8 cm<sup>2</sup>/V·s under bending—both notably higher than those of TFTs without the HZO-assisted NC effect.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"31 \",\"pages\":\"Article 100639\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842025000707\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000707","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在薄膜晶体管(TFTs)中集成非常规的hfo2基铁电体已被证明可以通过稳定负电容(NC)来提高性能。这是通过将铁电与高介电常数电介质串联作为无源TFT元件来实现的。然而,在柔性、温度敏感的基板上实现这一技术面临着重大挑战。在柔性基板上的tft的主要焦点是它们的制造具有相当低的热预算,以避免损坏底层基板。本文介绍了一种在氩气环境下通过表面等离子体处理稳定氧化铪锆(Hf0.5Zr0.5O2, HZO)铁电极性相的方法。等离子体激发Ar+离子,其轰击引起氧空位,从而在低温下稳定所需的正交相。采用HZO/HfO2无源堆叠的igzo通道tft在亚阈值摆幅(SS)方面表现出了显著的增强,从147 mV/dec降至41 mV/dec,降低了72%,与仅使用HfO2介电体的传统tft相比,导通电流(Ion)显著增加。场效应迁移率(μ)由5.7±0.2提高到28.8±6.2 cm2/V·s。在聚酰亚胺基板上制造的柔性tft也表现出优异的机械稳定性,即使在10,000次弯曲循环后也能保持一致的离子。此外,与没有hzo辅助NC效应的tft相比,这些tft在平面状态和弯曲状态下的μ值分别提高了72±13.5 cm2/V·s和33.9±3.8 cm2/V·s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma-irradiated hafnia ferroelectrics for high-performance flexible thin film transistors
Integrating unconventional HfO2-based ferroelectrics in thin film transistors (TFTs) has proven effective in enhancing performance by stabilizing negative capacitance (NC). This is achieved by incorporating the ferroelectric in series with a high-permittivity dielectric as a passive TFT component. However, implementing this on flexible, temperature-sensitive substrates presents significant challenges. The primary focus in TFTs on flexible substrates is their fabrication with a considerably low thermal budget to avoid damaging the underlying substrate. Herein, we introduce an approach to stabilize the desired ferroelectric polar phase of hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) through superficial plasma treatment in the argon environment. Plasma energizes Ar+ ions, whose bombardment induces oxygen vacancies, thereby stabilizing the desired orthorhombic phase at low temperatures. The IGZO-channel TFTs incorporating HZO/HfO2 passive stacks exhibit a substantial enhancement in subthreshold swing (SS), achieving a 72 % reduction from 147 mV/dec to 41 mV/dec, along with a notable increase in on-state currents (Ion) compared to conventional TFTs utilizing only HfO2 dielectrics. The field-effect mobility (μ) significantly improves from 5.7 ± 0.2 to 28.8 ± 6.2 cm2/V·s. Flexible TFTs fabricated on polyimide substrates also show excellent mechanical stability, maintaining consistent Ion even after 10,000 bending cycles. Moreover, these TFTs exhibit enhanced μ of 72 ± 13.5 cm2/V·s in the flat state and 33.9 ± 3.8 cm2/V·s under bending—both notably higher than those of TFTs without the HZO-assisted NC effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信