{"title":"在亚大气压力下,微型鳍状散热器中水的流动沸腾","authors":"Wenjie Hu , Yunlong Qiu , Chuan Tong , Weifang Chen , Changju Wu","doi":"10.1016/j.ijthermalsci.2025.110032","DOIUrl":null,"url":null,"abstract":"<div><div>Flow boiling of deionized water in a silicon-based micro pin-fin heat sink with sub-atmospheric outlet pressure are experimentally studied in this work. Experiments are conducted with a constant mass flow rate of 4 ml/min, a controlled outlet pressure ranging from 20 to 60 kPa, and effective heat flux up to 580 kW/m<sup>2</sup>. The inlet temperature is controlled at 20 K below the saturation temperature corresponding to the outlet pressure. The effects of sub-atmospheric outlet pressure on the flow boiling characteristics are investigated and discussed. It is found that lower sub-atmospheric outlet pressure leads to higher pressure drop due to the significant reduction in vapor phase density. When the outlet thermodynamic quality is about 0.27, the pressure drop is about 14.87 kPa at <em>P</em><sub><em>out</em></sub> = 20 kPa, while it is only 8.50 kPa at <em>P</em><sub><em>out</em></sub> = 60 kPa. In the meantime, the average heat transfer coefficient at <em>P</em><sub><em>out</em></sub> = 60 kPa is approximately twice that at <em>P</em><sub><em>out</em></sub> = 20 kPa. Besides, a decreasing tendency of wall temperature along the flow direction is observed, which is caused by the decreasing tendency of saturation temperature along the micro pin-fin heat sink. Under lower outlet pressure condition, the heat transfer performance degradation occurs earlier. The flow boiling visualization results show that the rapid expansion behavior of upstream bubbles and the evaporation of the thin liquid film in the downstream area are the main flow boiling behaviors in micro pin-fin heat sink under outlet sub-atmospheric pressure. The expansion of upstream bubbles is an important driving force for the replenishment of downstream liquid.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 110032"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow boiling of water in a micro pin-fin heat sink at sub-atmospheric pressure\",\"authors\":\"Wenjie Hu , Yunlong Qiu , Chuan Tong , Weifang Chen , Changju Wu\",\"doi\":\"10.1016/j.ijthermalsci.2025.110032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flow boiling of deionized water in a silicon-based micro pin-fin heat sink with sub-atmospheric outlet pressure are experimentally studied in this work. Experiments are conducted with a constant mass flow rate of 4 ml/min, a controlled outlet pressure ranging from 20 to 60 kPa, and effective heat flux up to 580 kW/m<sup>2</sup>. The inlet temperature is controlled at 20 K below the saturation temperature corresponding to the outlet pressure. The effects of sub-atmospheric outlet pressure on the flow boiling characteristics are investigated and discussed. It is found that lower sub-atmospheric outlet pressure leads to higher pressure drop due to the significant reduction in vapor phase density. When the outlet thermodynamic quality is about 0.27, the pressure drop is about 14.87 kPa at <em>P</em><sub><em>out</em></sub> = 20 kPa, while it is only 8.50 kPa at <em>P</em><sub><em>out</em></sub> = 60 kPa. In the meantime, the average heat transfer coefficient at <em>P</em><sub><em>out</em></sub> = 60 kPa is approximately twice that at <em>P</em><sub><em>out</em></sub> = 20 kPa. Besides, a decreasing tendency of wall temperature along the flow direction is observed, which is caused by the decreasing tendency of saturation temperature along the micro pin-fin heat sink. Under lower outlet pressure condition, the heat transfer performance degradation occurs earlier. The flow boiling visualization results show that the rapid expansion behavior of upstream bubbles and the evaporation of the thin liquid film in the downstream area are the main flow boiling behaviors in micro pin-fin heat sink under outlet sub-atmospheric pressure. The expansion of upstream bubbles is an important driving force for the replenishment of downstream liquid.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 110032\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925003552\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925003552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Flow boiling of water in a micro pin-fin heat sink at sub-atmospheric pressure
Flow boiling of deionized water in a silicon-based micro pin-fin heat sink with sub-atmospheric outlet pressure are experimentally studied in this work. Experiments are conducted with a constant mass flow rate of 4 ml/min, a controlled outlet pressure ranging from 20 to 60 kPa, and effective heat flux up to 580 kW/m2. The inlet temperature is controlled at 20 K below the saturation temperature corresponding to the outlet pressure. The effects of sub-atmospheric outlet pressure on the flow boiling characteristics are investigated and discussed. It is found that lower sub-atmospheric outlet pressure leads to higher pressure drop due to the significant reduction in vapor phase density. When the outlet thermodynamic quality is about 0.27, the pressure drop is about 14.87 kPa at Pout = 20 kPa, while it is only 8.50 kPa at Pout = 60 kPa. In the meantime, the average heat transfer coefficient at Pout = 60 kPa is approximately twice that at Pout = 20 kPa. Besides, a decreasing tendency of wall temperature along the flow direction is observed, which is caused by the decreasing tendency of saturation temperature along the micro pin-fin heat sink. Under lower outlet pressure condition, the heat transfer performance degradation occurs earlier. The flow boiling visualization results show that the rapid expansion behavior of upstream bubbles and the evaporation of the thin liquid film in the downstream area are the main flow boiling behaviors in micro pin-fin heat sink under outlet sub-atmospheric pressure. The expansion of upstream bubbles is an important driving force for the replenishment of downstream liquid.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.