{"title":"用于太阳能光伏发电室内污损研究的污室研制","authors":"Pankaj Borah , Leonardo Micheli , Nabin Sarmah","doi":"10.1016/j.solener.2025.113640","DOIUrl":null,"url":null,"abstract":"<div><div>The present work aimed to design, develop, and validate a soiling chamber to reproduce the deterioration of PV module efficiency due to dust deposition. Two locations with different soiling accumulation characteristics are chosen to validate the chamber under various atmospheric conditions and assess its accuracy. Specifically, the chamber results are compared with the performance of PV modules mounted in two outdoor conditions for one year. In addition, dust samples from the two locations were analysed using a scanning electron microscope (SEM) to ascertain the elemental compositions to comprehend the behaviour of dust deposition or variations in deposition patterns at the two locations. The newly constructed soiling chamber emulates soiling in a controlled environment based on historical data of rainfall, temperature, humidity, wind speed, and particulate concentration, considering also the changing seasons and conditions. The deposition density emulated in the soiling chamber is similar to that on the outside exposed samples, with a maximum variation in dust deposition of only 0.08 g/m<sup>2</sup>. Furthermore, an emulated module’s mean dust density is 2.367 g/m<sup>2</sup>, with a standard deviation of just 0.002 g/m<sup>2</sup>. This controlled indoor soiling chamber can emulate a long-term outdoor soil cycle in a few hours for any geographical location.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"297 ","pages":"Article 113640"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a soiling chamber for indoor soiling loss studies on solar PV power generation\",\"authors\":\"Pankaj Borah , Leonardo Micheli , Nabin Sarmah\",\"doi\":\"10.1016/j.solener.2025.113640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present work aimed to design, develop, and validate a soiling chamber to reproduce the deterioration of PV module efficiency due to dust deposition. Two locations with different soiling accumulation characteristics are chosen to validate the chamber under various atmospheric conditions and assess its accuracy. Specifically, the chamber results are compared with the performance of PV modules mounted in two outdoor conditions for one year. In addition, dust samples from the two locations were analysed using a scanning electron microscope (SEM) to ascertain the elemental compositions to comprehend the behaviour of dust deposition or variations in deposition patterns at the two locations. The newly constructed soiling chamber emulates soiling in a controlled environment based on historical data of rainfall, temperature, humidity, wind speed, and particulate concentration, considering also the changing seasons and conditions. The deposition density emulated in the soiling chamber is similar to that on the outside exposed samples, with a maximum variation in dust deposition of only 0.08 g/m<sup>2</sup>. Furthermore, an emulated module’s mean dust density is 2.367 g/m<sup>2</sup>, with a standard deviation of just 0.002 g/m<sup>2</sup>. This controlled indoor soiling chamber can emulate a long-term outdoor soil cycle in a few hours for any geographical location.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"297 \",\"pages\":\"Article 113640\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25004037\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25004037","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Development of a soiling chamber for indoor soiling loss studies on solar PV power generation
The present work aimed to design, develop, and validate a soiling chamber to reproduce the deterioration of PV module efficiency due to dust deposition. Two locations with different soiling accumulation characteristics are chosen to validate the chamber under various atmospheric conditions and assess its accuracy. Specifically, the chamber results are compared with the performance of PV modules mounted in two outdoor conditions for one year. In addition, dust samples from the two locations were analysed using a scanning electron microscope (SEM) to ascertain the elemental compositions to comprehend the behaviour of dust deposition or variations in deposition patterns at the two locations. The newly constructed soiling chamber emulates soiling in a controlled environment based on historical data of rainfall, temperature, humidity, wind speed, and particulate concentration, considering also the changing seasons and conditions. The deposition density emulated in the soiling chamber is similar to that on the outside exposed samples, with a maximum variation in dust deposition of only 0.08 g/m2. Furthermore, an emulated module’s mean dust density is 2.367 g/m2, with a standard deviation of just 0.002 g/m2. This controlled indoor soiling chamber can emulate a long-term outdoor soil cycle in a few hours for any geographical location.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass