{"title":"二维的monge - ampantere系统:一种正则性改进","authors":"Marta Lewicka","doi":"10.1016/j.jfa.2025.111064","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a convex integration result for the Monge-Ampère system introduced in <span><span>[7]</span></span>, in case of dimension <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and arbitrary codimension <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Our prior result <span><span>[8]</span></span> stated flexibility up to the Hölder regularity <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>k</mi></mrow></mfrac></mrow></msup></math></span>, whereas presently we achieve flexibility up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> for any <em>k</em>. This first result uses the approach closest to that of Källen <span><span>[6]</span></span> in the context of the isometric immersion problem, while the second result uses the double iteration procedure from <span><span>[7]</span></span> combined with the approach of Cao-Hirsch-Inauen <span><span>[1]</span></span>, agreeing with it for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> at the Hölder regularity up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111064"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Monge-Ampère system in dimension two: A regularity improvement\",\"authors\":\"Marta Lewicka\",\"doi\":\"10.1016/j.jfa.2025.111064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a convex integration result for the Monge-Ampère system introduced in <span><span>[7]</span></span>, in case of dimension <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and arbitrary codimension <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Our prior result <span><span>[8]</span></span> stated flexibility up to the Hölder regularity <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>k</mi></mrow></mfrac></mrow></msup></math></span>, whereas presently we achieve flexibility up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> for any <em>k</em>. This first result uses the approach closest to that of Källen <span><span>[6]</span></span> in the context of the isometric immersion problem, while the second result uses the double iteration procedure from <span><span>[7]</span></span> combined with the approach of Cao-Hirsch-Inauen <span><span>[1]</span></span>, agreeing with it for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> at the Hölder regularity up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 111064\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002460\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002460","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了[7]中引入的monge - ampontre系统在维数d=2且任意余维k≥1的情况下的一个凸积分结果。我们之前的结果[8]规定的灵活性持有人规律性C1, 11 + 4 / k,而目前我们实现灵活性C1, 1 k≥4和C1, 2 k 12 k + 1−−1 k。这第一个结果使用的方法接近Kallen[6]的等距浸入式问题,而第二个结果采用双重迭代过程[7]结合的方法Cao-Hirsch-Inauen[1],在持有人同意k = 1规律性C1, 1/3。
The Monge-Ampère system in dimension two: A regularity improvement
We prove a convex integration result for the Monge-Ampère system introduced in [7], in case of dimension and arbitrary codimension . Our prior result [8] stated flexibility up to the Hölder regularity , whereas presently we achieve flexibility up to when and up to for any k. This first result uses the approach closest to that of Källen [6] in the context of the isometric immersion problem, while the second result uses the double iteration procedure from [7] combined with the approach of Cao-Hirsch-Inauen [1], agreeing with it for at the Hölder regularity up to .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis