Xuechen Wang , Wei Li , Jinjin Zhao , Fuquan Wang , Lei Fan , Zixun Chen , Ping Wang , Yujia Zhai , Zhixiang Gao , Wenshan Qu , Hua Wang , Bin Wei
{"title":"基于P3HT掺杂有机小分子TmPyPB/ TpPyPB的数字有机忆阻器","authors":"Xuechen Wang , Wei Li , Jinjin Zhao , Fuquan Wang , Lei Fan , Zixun Chen , Ping Wang , Yujia Zhai , Zhixiang Gao , Wenshan Qu , Hua Wang , Bin Wei","doi":"10.1016/j.orgel.2025.107281","DOIUrl":null,"url":null,"abstract":"<div><div>Digital organic memristors have potential in the field of data storage technology due to their advantages of superintegration, simple preparation process, flexibility and low power consumption. However, it's difficult to achieve low operating voltages while maintaining strong endurance. We fabricated digital organic memristors based on poly(3-hexylthiophene) (P3HT) doped with 1,3,5-tri(m-pyridin-3-yl-phenyl) benzene (TmPyPB) or 1,3,5-tris(p-pyridin-3-yl-phenyl) benzene (TpPyPB), which achieve both strong endurance and low operating voltages. The device exhibits a current on/off ratio (<em>I</em><sub><em>on/off</em></sub>) of 10<sup>4</sup>, long retention time of 10<sup>4</sup> s, strong endurance of 250 cycles, and response time of 500 ms. Their set voltage (<em>V</em><sub><em>set</em></sub>) and reset voltage (<em>V</em><sub><em>reset</em></sub>) were frozen in 1.85 V and −2.69 V, respectively. The resistive switching mechanism was the trapping and detrapping process of charge trap induced by TmPyPB or TpPyPB. In addition, we constructed a 10 × 10 memristor array, realized alphabetic information storage and basic logic operations, demonstrate the device has good reliability, current stability, and uniform performance. This study provides an effective solution for realizing digital organic memristors with high durability and low operating voltage.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"144 ","pages":"Article 107281"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital organic memristor based on P3HT doped with organic small molecules TmPyPB/ TpPyPB\",\"authors\":\"Xuechen Wang , Wei Li , Jinjin Zhao , Fuquan Wang , Lei Fan , Zixun Chen , Ping Wang , Yujia Zhai , Zhixiang Gao , Wenshan Qu , Hua Wang , Bin Wei\",\"doi\":\"10.1016/j.orgel.2025.107281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital organic memristors have potential in the field of data storage technology due to their advantages of superintegration, simple preparation process, flexibility and low power consumption. However, it's difficult to achieve low operating voltages while maintaining strong endurance. We fabricated digital organic memristors based on poly(3-hexylthiophene) (P3HT) doped with 1,3,5-tri(m-pyridin-3-yl-phenyl) benzene (TmPyPB) or 1,3,5-tris(p-pyridin-3-yl-phenyl) benzene (TpPyPB), which achieve both strong endurance and low operating voltages. The device exhibits a current on/off ratio (<em>I</em><sub><em>on/off</em></sub>) of 10<sup>4</sup>, long retention time of 10<sup>4</sup> s, strong endurance of 250 cycles, and response time of 500 ms. Their set voltage (<em>V</em><sub><em>set</em></sub>) and reset voltage (<em>V</em><sub><em>reset</em></sub>) were frozen in 1.85 V and −2.69 V, respectively. The resistive switching mechanism was the trapping and detrapping process of charge trap induced by TmPyPB or TpPyPB. In addition, we constructed a 10 × 10 memristor array, realized alphabetic information storage and basic logic operations, demonstrate the device has good reliability, current stability, and uniform performance. This study provides an effective solution for realizing digital organic memristors with high durability and low operating voltage.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"144 \",\"pages\":\"Article 107281\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119925000874\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000874","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Digital organic memristor based on P3HT doped with organic small molecules TmPyPB/ TpPyPB
Digital organic memristors have potential in the field of data storage technology due to their advantages of superintegration, simple preparation process, flexibility and low power consumption. However, it's difficult to achieve low operating voltages while maintaining strong endurance. We fabricated digital organic memristors based on poly(3-hexylthiophene) (P3HT) doped with 1,3,5-tri(m-pyridin-3-yl-phenyl) benzene (TmPyPB) or 1,3,5-tris(p-pyridin-3-yl-phenyl) benzene (TpPyPB), which achieve both strong endurance and low operating voltages. The device exhibits a current on/off ratio (Ion/off) of 104, long retention time of 104 s, strong endurance of 250 cycles, and response time of 500 ms. Their set voltage (Vset) and reset voltage (Vreset) were frozen in 1.85 V and −2.69 V, respectively. The resistive switching mechanism was the trapping and detrapping process of charge trap induced by TmPyPB or TpPyPB. In addition, we constructed a 10 × 10 memristor array, realized alphabetic information storage and basic logic operations, demonstrate the device has good reliability, current stability, and uniform performance. This study provides an effective solution for realizing digital organic memristors with high durability and low operating voltage.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.