Linhui Su , Weifeng Ruan , Tingzhe Ou , Jinghua Zhang , Yunv Dai , Ran Tao , Xiaomeng Zhang , Nora Fung-yee Tam , Yang Yang , Yiping Tai
{"title":"亚热带城市河流恢复对底栖大型无脊椎动物恢复的响应及影响因素","authors":"Linhui Su , Weifeng Ruan , Tingzhe Ou , Jinghua Zhang , Yunv Dai , Ran Tao , Xiaomeng Zhang , Nora Fung-yee Tam , Yang Yang , Yiping Tai","doi":"10.1016/j.ecoleng.2025.107687","DOIUrl":null,"url":null,"abstract":"<div><div>Urban streams in many regions of the world are subject to water environment and ecological degradation, and the efficacy of conventional remediation strategies remains uncertain. This study evaluated the initial ecological recovery in rehabilitated urban streams by analyzing the response of benthic macroinvertebrates community and water quality. The effects of hard embankment engineering were quantified using an Index of Biological Integrity (IBI), which was derived from five core indicators: number of taxa, Shannon-Wiener index, Tubificidae%, tolerant% and collectors%. Data were collected from 29 sampling sites across 11 treated urban channels in Guangzhou City. As impervious surface area increased, sensitive species declined or vanished, while pollution-tolerant species like Oligochaeta and Chironomidae became dominant. Macroinvertebrate diversity and functional feeding groups significantly decreased, leading to “very poor” and “poor” health statuses. Key water parameters affecting benthic species diversity included dissolved oxygen (DO), chemical oxygen demand (COD<sub>Mn</sub>), total phosphorus (TP), depth, and flow velocity. The Shannon-Weiner index and functional feeding group for macroinvertebrates show seasonal consistency in disturbance zones (<em>P</em> < 0.05). However, Benthic Index of Biological Integrity (B-IBI) assessment results vary seasonally, correlating significantly with disturbance intensity, indicating benthic communities' sensitivity to habitat stressors. Water replenishment strategies mitigate early urbanization impacts, highlighting their role in boosting urban stream resilience and offering new insights for ecological rehabilitation and global urban river management.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"219 ","pages":"Article 107687"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses and influencing factors of benthic macroinvertebrate recovery in restored subtropical urban rivers\",\"authors\":\"Linhui Su , Weifeng Ruan , Tingzhe Ou , Jinghua Zhang , Yunv Dai , Ran Tao , Xiaomeng Zhang , Nora Fung-yee Tam , Yang Yang , Yiping Tai\",\"doi\":\"10.1016/j.ecoleng.2025.107687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban streams in many regions of the world are subject to water environment and ecological degradation, and the efficacy of conventional remediation strategies remains uncertain. This study evaluated the initial ecological recovery in rehabilitated urban streams by analyzing the response of benthic macroinvertebrates community and water quality. The effects of hard embankment engineering were quantified using an Index of Biological Integrity (IBI), which was derived from five core indicators: number of taxa, Shannon-Wiener index, Tubificidae%, tolerant% and collectors%. Data were collected from 29 sampling sites across 11 treated urban channels in Guangzhou City. As impervious surface area increased, sensitive species declined or vanished, while pollution-tolerant species like Oligochaeta and Chironomidae became dominant. Macroinvertebrate diversity and functional feeding groups significantly decreased, leading to “very poor” and “poor” health statuses. Key water parameters affecting benthic species diversity included dissolved oxygen (DO), chemical oxygen demand (COD<sub>Mn</sub>), total phosphorus (TP), depth, and flow velocity. The Shannon-Weiner index and functional feeding group for macroinvertebrates show seasonal consistency in disturbance zones (<em>P</em> < 0.05). However, Benthic Index of Biological Integrity (B-IBI) assessment results vary seasonally, correlating significantly with disturbance intensity, indicating benthic communities' sensitivity to habitat stressors. Water replenishment strategies mitigate early urbanization impacts, highlighting their role in boosting urban stream resilience and offering new insights for ecological rehabilitation and global urban river management.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"219 \",\"pages\":\"Article 107687\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857425001752\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425001752","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Responses and influencing factors of benthic macroinvertebrate recovery in restored subtropical urban rivers
Urban streams in many regions of the world are subject to water environment and ecological degradation, and the efficacy of conventional remediation strategies remains uncertain. This study evaluated the initial ecological recovery in rehabilitated urban streams by analyzing the response of benthic macroinvertebrates community and water quality. The effects of hard embankment engineering were quantified using an Index of Biological Integrity (IBI), which was derived from five core indicators: number of taxa, Shannon-Wiener index, Tubificidae%, tolerant% and collectors%. Data were collected from 29 sampling sites across 11 treated urban channels in Guangzhou City. As impervious surface area increased, sensitive species declined or vanished, while pollution-tolerant species like Oligochaeta and Chironomidae became dominant. Macroinvertebrate diversity and functional feeding groups significantly decreased, leading to “very poor” and “poor” health statuses. Key water parameters affecting benthic species diversity included dissolved oxygen (DO), chemical oxygen demand (CODMn), total phosphorus (TP), depth, and flow velocity. The Shannon-Weiner index and functional feeding group for macroinvertebrates show seasonal consistency in disturbance zones (P < 0.05). However, Benthic Index of Biological Integrity (B-IBI) assessment results vary seasonally, correlating significantly with disturbance intensity, indicating benthic communities' sensitivity to habitat stressors. Water replenishment strategies mitigate early urbanization impacts, highlighting their role in boosting urban stream resilience and offering new insights for ecological rehabilitation and global urban river management.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.