Zhijiang Zhang , Kai Yang , Lunche Wang , Kai Cheng , Chao Chen , Chao Ding
{"title":"人工林对中国地表温度的调节作用","authors":"Zhijiang Zhang , Kai Yang , Lunche Wang , Kai Cheng , Chao Chen , Chao Ding","doi":"10.1016/j.agrformet.2025.110660","DOIUrl":null,"url":null,"abstract":"<div><div>Afforestation has been regarded as a potentially effective strategy for the mitigation of climate warming. China has the largest planted forest area worldwide benefited by a series of large-scale afforestation and reforestation project since the 1970s. The planted forests (PF) have been widely reported as an enduring carbon sink. However, the climatic regulation effect of PF on climate through biophysical process remains unclear. To this end, we utilized satellite observations to quantify the impact of the conversion of grasslands (GRA), croplands (CRO) and natural forests (NF) to PF on land surface temperature (LST) between 2003 and 2012 and illustrated the underlying biophysical mechanisms based on a revised Intrinsic Biophysical Mechanism (IBM) method. The results indicated that afforestation of PF caused negligible daily cooling effect (−0.005 ± 0.002 K) compared with NF while induced obvious daily cooling effect compared with GRA (−0.253 ± 0.004 K) and CRO (−0.162 ± 0.002 K). We also demonstrated that the revised IBM attribution method is applicable in interpreting the biophysical mechanism of PF on LST. Attribution analysis revealed that the surface roughness and Bowen ratio dominated the cooling effect as the surface became rougher and more evaporative cooling after converting NF, GRA, or CRO to PF. The contributions of albedo were less stark compared with other components and presented a weak warming effect. Furthermore, the atmospheric feedback was proved that have a pronounced impact on LST and should be included in the attribution of LST change. This study focuses on the potential of PF afforestation to provide local climate adaptation benefits, filling the gaps of previous studies involved to biophysical effect failure in distinguishing NF and PF, and provides new guidance for local climate impact evaluation when implementing forestry projects.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"372 ","pages":"Article 110660"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation effect of planted forests on land surface temperature in China\",\"authors\":\"Zhijiang Zhang , Kai Yang , Lunche Wang , Kai Cheng , Chao Chen , Chao Ding\",\"doi\":\"10.1016/j.agrformet.2025.110660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Afforestation has been regarded as a potentially effective strategy for the mitigation of climate warming. China has the largest planted forest area worldwide benefited by a series of large-scale afforestation and reforestation project since the 1970s. The planted forests (PF) have been widely reported as an enduring carbon sink. However, the climatic regulation effect of PF on climate through biophysical process remains unclear. To this end, we utilized satellite observations to quantify the impact of the conversion of grasslands (GRA), croplands (CRO) and natural forests (NF) to PF on land surface temperature (LST) between 2003 and 2012 and illustrated the underlying biophysical mechanisms based on a revised Intrinsic Biophysical Mechanism (IBM) method. The results indicated that afforestation of PF caused negligible daily cooling effect (−0.005 ± 0.002 K) compared with NF while induced obvious daily cooling effect compared with GRA (−0.253 ± 0.004 K) and CRO (−0.162 ± 0.002 K). We also demonstrated that the revised IBM attribution method is applicable in interpreting the biophysical mechanism of PF on LST. Attribution analysis revealed that the surface roughness and Bowen ratio dominated the cooling effect as the surface became rougher and more evaporative cooling after converting NF, GRA, or CRO to PF. The contributions of albedo were less stark compared with other components and presented a weak warming effect. Furthermore, the atmospheric feedback was proved that have a pronounced impact on LST and should be included in the attribution of LST change. This study focuses on the potential of PF afforestation to provide local climate adaptation benefits, filling the gaps of previous studies involved to biophysical effect failure in distinguishing NF and PF, and provides new guidance for local climate impact evaluation when implementing forestry projects.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"372 \",\"pages\":\"Article 110660\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192325002801\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325002801","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Regulation effect of planted forests on land surface temperature in China
Afforestation has been regarded as a potentially effective strategy for the mitigation of climate warming. China has the largest planted forest area worldwide benefited by a series of large-scale afforestation and reforestation project since the 1970s. The planted forests (PF) have been widely reported as an enduring carbon sink. However, the climatic regulation effect of PF on climate through biophysical process remains unclear. To this end, we utilized satellite observations to quantify the impact of the conversion of grasslands (GRA), croplands (CRO) and natural forests (NF) to PF on land surface temperature (LST) between 2003 and 2012 and illustrated the underlying biophysical mechanisms based on a revised Intrinsic Biophysical Mechanism (IBM) method. The results indicated that afforestation of PF caused negligible daily cooling effect (−0.005 ± 0.002 K) compared with NF while induced obvious daily cooling effect compared with GRA (−0.253 ± 0.004 K) and CRO (−0.162 ± 0.002 K). We also demonstrated that the revised IBM attribution method is applicable in interpreting the biophysical mechanism of PF on LST. Attribution analysis revealed that the surface roughness and Bowen ratio dominated the cooling effect as the surface became rougher and more evaporative cooling after converting NF, GRA, or CRO to PF. The contributions of albedo were less stark compared with other components and presented a weak warming effect. Furthermore, the atmospheric feedback was proved that have a pronounced impact on LST and should be included in the attribution of LST change. This study focuses on the potential of PF afforestation to provide local climate adaptation benefits, filling the gaps of previous studies involved to biophysical effect failure in distinguishing NF and PF, and provides new guidance for local climate impact evaluation when implementing forestry projects.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.