Shuni Wang , Yingxue Zhang , Wangjuan Hu, Gaorong Zan, Yaxuan He, Mingwei Xing, Hongjing Zhao
{"title":"番茄红素通过调节AKT/AMPK通路,减轻磺胺甲恶唑诱导的内质网应激-自噬轴对草鱼脾脏的损伤","authors":"Shuni Wang , Yingxue Zhang , Wangjuan Hu, Gaorong Zan, Yaxuan He, Mingwei Xing, Hongjing Zhao","doi":"10.1016/j.cbpc.2025.110239","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfamethozole (SMZ), an antibiotic widely used in aquaculture, is bioaccumulating and resistant to degradation, posing ecological risks. Although environmentally relevant SMZ concentrations (0.3 μg/L) are known to impair piscine immune function, the molecular mechanisms driving its toxicity remain elusive. Lycopene (LYC) is a potent bioactive compound that alleviates SMZ-induced toxicity by regulating the endoplasmic reticulum (ER) stress autophagy axis. This experiment chooses 120 grass carps, divided into 4 groups: control group (CON), SMZ exposure group (0.3 μg/L), the LYC supplement group (10 mg/kg) and SMZ + LYC combined treatment group. The toxicity of SMZ (0.3 μg/L) to grass carp and the mitigation effect of LYC (10 mg/kg) to SMZ were studied through a 30-day experiment. Histopathological alterations were evaluated via hematoxylin-eosin (H&E) staining, ultrastructural changes were visualized by transmission electron microscopy (TEM), and key biomarkers of ER stress, autophagy, and AKT/AMPK signaling were quantified through qRT-PCR and Western blotting. Results demonstrated that SMZ exposure induced disorganization of white pulp, cellular vacuolation, and activation of melanomacrophage centers (MMCs), accompanied by significant upregulation of ER stress markers (IRE1, PERK, ATF6, GRP78, eif2α) and autophagy-related genes (LC3, P62, Beclin1, ATG5). TEM revealed nuclear pyknosis, mitochondrial swelling, and increased autophagosomes in SMZ-treated splenocytes. LYC intervention markedly attenuated these pathological injuries and suppressed ER stress and excessive autophagy by modulating the AKT/AMPK pathway. Molecular docking analysis confirmed binding affinity between LYC and AKT/AMPK proteins, with a binding energy of −8.8 kcal/mol. Our findings establish a mechanistic foundation for developing LYC-enriched functional feeds to counteract antibiotic-associated ecological risks in sustainable aquaculture.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"296 ","pages":"Article 110239"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lycopene alleviates splenic injury in grass carp (Ctenopharyngodon idella) caused by endoplasmic reticulum stress-autophagy axis induced by sulfamethoxazole through regulating AKT/AMPK pathway\",\"authors\":\"Shuni Wang , Yingxue Zhang , Wangjuan Hu, Gaorong Zan, Yaxuan He, Mingwei Xing, Hongjing Zhao\",\"doi\":\"10.1016/j.cbpc.2025.110239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfamethozole (SMZ), an antibiotic widely used in aquaculture, is bioaccumulating and resistant to degradation, posing ecological risks. Although environmentally relevant SMZ concentrations (0.3 μg/L) are known to impair piscine immune function, the molecular mechanisms driving its toxicity remain elusive. Lycopene (LYC) is a potent bioactive compound that alleviates SMZ-induced toxicity by regulating the endoplasmic reticulum (ER) stress autophagy axis. This experiment chooses 120 grass carps, divided into 4 groups: control group (CON), SMZ exposure group (0.3 μg/L), the LYC supplement group (10 mg/kg) and SMZ + LYC combined treatment group. The toxicity of SMZ (0.3 μg/L) to grass carp and the mitigation effect of LYC (10 mg/kg) to SMZ were studied through a 30-day experiment. Histopathological alterations were evaluated via hematoxylin-eosin (H&E) staining, ultrastructural changes were visualized by transmission electron microscopy (TEM), and key biomarkers of ER stress, autophagy, and AKT/AMPK signaling were quantified through qRT-PCR and Western blotting. Results demonstrated that SMZ exposure induced disorganization of white pulp, cellular vacuolation, and activation of melanomacrophage centers (MMCs), accompanied by significant upregulation of ER stress markers (IRE1, PERK, ATF6, GRP78, eif2α) and autophagy-related genes (LC3, P62, Beclin1, ATG5). TEM revealed nuclear pyknosis, mitochondrial swelling, and increased autophagosomes in SMZ-treated splenocytes. LYC intervention markedly attenuated these pathological injuries and suppressed ER stress and excessive autophagy by modulating the AKT/AMPK pathway. Molecular docking analysis confirmed binding affinity between LYC and AKT/AMPK proteins, with a binding energy of −8.8 kcal/mol. Our findings establish a mechanistic foundation for developing LYC-enriched functional feeds to counteract antibiotic-associated ecological risks in sustainable aquaculture.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"296 \",\"pages\":\"Article 110239\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045625001206\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625001206","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lycopene alleviates splenic injury in grass carp (Ctenopharyngodon idella) caused by endoplasmic reticulum stress-autophagy axis induced by sulfamethoxazole through regulating AKT/AMPK pathway
Sulfamethozole (SMZ), an antibiotic widely used in aquaculture, is bioaccumulating and resistant to degradation, posing ecological risks. Although environmentally relevant SMZ concentrations (0.3 μg/L) are known to impair piscine immune function, the molecular mechanisms driving its toxicity remain elusive. Lycopene (LYC) is a potent bioactive compound that alleviates SMZ-induced toxicity by regulating the endoplasmic reticulum (ER) stress autophagy axis. This experiment chooses 120 grass carps, divided into 4 groups: control group (CON), SMZ exposure group (0.3 μg/L), the LYC supplement group (10 mg/kg) and SMZ + LYC combined treatment group. The toxicity of SMZ (0.3 μg/L) to grass carp and the mitigation effect of LYC (10 mg/kg) to SMZ were studied through a 30-day experiment. Histopathological alterations were evaluated via hematoxylin-eosin (H&E) staining, ultrastructural changes were visualized by transmission electron microscopy (TEM), and key biomarkers of ER stress, autophagy, and AKT/AMPK signaling were quantified through qRT-PCR and Western blotting. Results demonstrated that SMZ exposure induced disorganization of white pulp, cellular vacuolation, and activation of melanomacrophage centers (MMCs), accompanied by significant upregulation of ER stress markers (IRE1, PERK, ATF6, GRP78, eif2α) and autophagy-related genes (LC3, P62, Beclin1, ATG5). TEM revealed nuclear pyknosis, mitochondrial swelling, and increased autophagosomes in SMZ-treated splenocytes. LYC intervention markedly attenuated these pathological injuries and suppressed ER stress and excessive autophagy by modulating the AKT/AMPK pathway. Molecular docking analysis confirmed binding affinity between LYC and AKT/AMPK proteins, with a binding energy of −8.8 kcal/mol. Our findings establish a mechanistic foundation for developing LYC-enriched functional feeds to counteract antibiotic-associated ecological risks in sustainable aquaculture.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.