{"title":"Quillen的本地化问题","authors":"Satya Mandal","doi":"10.1016/j.jalgebra.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a quasi projective scheme over a noetherian affine scheme <span><math><mi>S</mi><mi>p</mi><mi>e</mi><mi>c</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>U</mi><mo>⊆</mo><mi>X</mi></math></span> be an open subset, and <span><math><mi>Z</mi><mo>=</mo><mi>X</mi><mo>−</mo><mi>U</mi></math></span>. Assume that <em>Z</em> has a complete intersection subscheme structure, with <span><math><mi>k</mi><mo>=</mo><mrow><mi>co</mi></mrow><mi>dim</mi><mo></mo><mi>Z</mi></math></span>. Consider the map<span><span><span><math><mi>q</mi><mo>:</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of the <span><math><mi>K</mi></math></span>-theory spectra. We give a description of the homotopy fiber of <span><math><mi>q</mi></math></span>. Let <span><math><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> denote the full subcategory of perfect modules <span><math><mi>F</mi><mo>∈</mo><mi>C</mi><mi>o</mi><mi>h</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> such that (1) <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>|</mo><mi>U</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, (2) <span><math><mi>g</mi><mi>r</mi><mi>a</mi><mi>d</mi><mi>e</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub><mo></mo><mi>F</mi><mo>=</mo><mi>k</mi></math></span>. It turns out that the homotopy fiber of <span><math><mi>q</mi></math></span> is the <span><math><mi>K</mi></math></span>-theory spectra <span><math><mi>K</mi><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>. Likewise, we compute the homotopy fiber of the pullback map<span><span><span><math><mi>g</mi><mo>:</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of Karoubi Grothendieck-Witt bispectra. Consequently, we obtain long exact sequences of <span><math><mi>K</mi></math></span>-groups and of <span><math><mi>G</mi><mi>W</mi></math></span>-groups. These results settle some of the long standing open problems.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"680 ","pages":"Pages 205-266"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization problems of Quillen\",\"authors\":\"Satya Mandal\",\"doi\":\"10.1016/j.jalgebra.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>X</em> be a quasi projective scheme over a noetherian affine scheme <span><math><mi>S</mi><mi>p</mi><mi>e</mi><mi>c</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>U</mi><mo>⊆</mo><mi>X</mi></math></span> be an open subset, and <span><math><mi>Z</mi><mo>=</mo><mi>X</mi><mo>−</mo><mi>U</mi></math></span>. Assume that <em>Z</em> has a complete intersection subscheme structure, with <span><math><mi>k</mi><mo>=</mo><mrow><mi>co</mi></mrow><mi>dim</mi><mo></mo><mi>Z</mi></math></span>. Consider the map<span><span><span><math><mi>q</mi><mo>:</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of the <span><math><mi>K</mi></math></span>-theory spectra. We give a description of the homotopy fiber of <span><math><mi>q</mi></math></span>. Let <span><math><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> denote the full subcategory of perfect modules <span><math><mi>F</mi><mo>∈</mo><mi>C</mi><mi>o</mi><mi>h</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> such that (1) <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>|</mo><mi>U</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, (2) <span><math><mi>g</mi><mi>r</mi><mi>a</mi><mi>d</mi><mi>e</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub><mo></mo><mi>F</mi><mo>=</mo><mi>k</mi></math></span>. It turns out that the homotopy fiber of <span><math><mi>q</mi></math></span> is the <span><math><mi>K</mi></math></span>-theory spectra <span><math><mi>K</mi><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>. Likewise, we compute the homotopy fiber of the pullback map<span><span><span><math><mi>g</mi><mo>:</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of Karoubi Grothendieck-Witt bispectra. Consequently, we obtain long exact sequences of <span><math><mi>K</mi></math></span>-groups and of <span><math><mi>G</mi><mi>W</mi></math></span>-groups. These results settle some of the long standing open problems.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"680 \",\"pages\":\"Pages 205-266\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002947\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002947","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let X be a quasi projective scheme over a noetherian affine scheme , be an open subset, and . Assume that Z has a complete intersection subscheme structure, with . Consider the map of the -theory spectra. We give a description of the homotopy fiber of . Let denote the full subcategory of perfect modules such that (1) , (2) . It turns out that the homotopy fiber of is the -theory spectra . Likewise, we compute the homotopy fiber of the pullback map of Karoubi Grothendieck-Witt bispectra. Consequently, we obtain long exact sequences of -groups and of -groups. These results settle some of the long standing open problems.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.