原位掺杂衍生物MnOx/Mn-ZrO2-C的高效降解

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Qiuju Qin , Chaolian Zhu , Donghai Mo , Zhengjun Chen , Lihui Dong , Bin Li , Liya Zhou
{"title":"原位掺杂衍生物MnOx/Mn-ZrO2-C的高效降解","authors":"Qiuju Qin ,&nbsp;Chaolian Zhu ,&nbsp;Donghai Mo ,&nbsp;Zhengjun Chen ,&nbsp;Lihui Dong ,&nbsp;Bin Li ,&nbsp;Liya Zhou","doi":"10.1016/j.mcat.2025.115243","DOIUrl":null,"url":null,"abstract":"<div><div>MnO<sub>x</sub> exhibits excellent low temperature activity for degradation NO<sub>x</sub>, but its poor SO<sub>2</sub> tolerance restrains its application. Herein, an in situ construction method for MnO<sub>x</sub> loading on Mn-doped ZrO<sub>2</sub> carrier with carbon (MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C) derived from Mn(NO<sub>3</sub>)<sub>2</sub>/UIO-66 by in situ doped pyrolysis–oxidation, in which Mn replaces Zr to modify the electronic structure of the ZrO<sub>2</sub>. The MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C with abundant surface oxygen and acid sites showed excellent activity and better SO<sub>2</sub> resistance. A series of characterization results indicated that Mn doping modulates the electron structure of carrier ZrO<sub>2</sub> and enhances the interactions among MnO<sub>x</sub>, carbon, and Mn-ZrO<sub>2</sub>, resulting in increasing the electron cloud density around Mn and Zr, and consequently, the Mn and Zr on the MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C exhibit poorer sulfiphilic. These findings emphasize the benefits of utilizing a multipronged effect to fabricate highly active and sulfur-resistant NH<sub>3</sub>-SCR catalysts.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"583 ","pages":"Article 115243"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ doping derivative construction of MnOx/Mn-ZrO2-C for efficient degradation of NOx\",\"authors\":\"Qiuju Qin ,&nbsp;Chaolian Zhu ,&nbsp;Donghai Mo ,&nbsp;Zhengjun Chen ,&nbsp;Lihui Dong ,&nbsp;Bin Li ,&nbsp;Liya Zhou\",\"doi\":\"10.1016/j.mcat.2025.115243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MnO<sub>x</sub> exhibits excellent low temperature activity for degradation NO<sub>x</sub>, but its poor SO<sub>2</sub> tolerance restrains its application. Herein, an in situ construction method for MnO<sub>x</sub> loading on Mn-doped ZrO<sub>2</sub> carrier with carbon (MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C) derived from Mn(NO<sub>3</sub>)<sub>2</sub>/UIO-66 by in situ doped pyrolysis–oxidation, in which Mn replaces Zr to modify the electronic structure of the ZrO<sub>2</sub>. The MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C with abundant surface oxygen and acid sites showed excellent activity and better SO<sub>2</sub> resistance. A series of characterization results indicated that Mn doping modulates the electron structure of carrier ZrO<sub>2</sub> and enhances the interactions among MnO<sub>x</sub>, carbon, and Mn-ZrO<sub>2</sub>, resulting in increasing the electron cloud density around Mn and Zr, and consequently, the Mn and Zr on the MnO<sub>x</sub>/Mn-ZrO<sub>2</sub>-C exhibit poorer sulfiphilic. These findings emphasize the benefits of utilizing a multipronged effect to fabricate highly active and sulfur-resistant NH<sub>3</sub>-SCR catalysts.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"583 \",\"pages\":\"Article 115243\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823125004298\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125004298","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MnOx具有良好的低温降解NOx活性,但其较差的SO2耐受性限制了其应用。本文提出了一种原位掺杂热解氧化Mn(NO3)2/ uuo -66衍生碳(MnOx/Mn-ZrO2- c)原位构建MnOx负载在Mn掺杂ZrO2载体上的方法,其中Mn取代Zr修饰ZrO2的电子结构。具有丰富表面氧和酸位的MnOx/Mn-ZrO2-C具有优异的活性和较好的抗SO2能力。一系列表征结果表明,Mn掺杂调节了载流子ZrO2的电子结构,增强了MnOx、碳和Mn-ZrO2之间的相互作用,导致Mn和Zr周围的电子云密度增加,从而使MnOx/Mn-ZrO2- c上的Mn和Zr表现出较差的亲硫性。这些发现强调了利用多管齐下的效应来制造高活性和耐硫的NH3-SCR催化剂的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ doping derivative construction of MnOx/Mn-ZrO2-C for efficient degradation of NOx
MnOx exhibits excellent low temperature activity for degradation NOx, but its poor SO2 tolerance restrains its application. Herein, an in situ construction method for MnOx loading on Mn-doped ZrO2 carrier with carbon (MnOx/Mn-ZrO2-C) derived from Mn(NO3)2/UIO-66 by in situ doped pyrolysis–oxidation, in which Mn replaces Zr to modify the electronic structure of the ZrO2. The MnOx/Mn-ZrO2-C with abundant surface oxygen and acid sites showed excellent activity and better SO2 resistance. A series of characterization results indicated that Mn doping modulates the electron structure of carrier ZrO2 and enhances the interactions among MnOx, carbon, and Mn-ZrO2, resulting in increasing the electron cloud density around Mn and Zr, and consequently, the Mn and Zr on the MnOx/Mn-ZrO2-C exhibit poorer sulfiphilic. These findings emphasize the benefits of utilizing a multipronged effect to fabricate highly active and sulfur-resistant NH3-SCR catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信