存在测量误差的随机数据缺失超球上条件u统计量分析的极限定理

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Salim Bouzebda, Nourelhouda Taachouche
{"title":"存在测量误差的随机数据缺失超球上条件u统计量分析的极限定理","authors":"Salim Bouzebda,&nbsp;Nourelhouda Taachouche","doi":"10.1016/j.cam.2025.116811","DOIUrl":null,"url":null,"abstract":"<div><div>Missing data and measurement errors are prevalent challenges in modern statistical analyses, mainly when observations lie on complex structures like unit hyperspheres. To address these issues, we introduce a comprehensive framework for conditional <em>U</em>-statistics of general order, tailored explicitly for data missing at random and contaminated by measurement errors in such settings. We propose a novel deconvolution method for these conditional <em>U</em>-statistics and, for the first time, investigate its convergence rate and asymptotic distribution. Our unified approach establishes general asymptotic properties under broad model conditions, enabling us to derive asymptotic confidence intervals based on the estimator’s distribution. To demonstrate the practical significance of our framework, we provide new insights into the Kendall rank correlation coefficient and address discrimination problems.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"472 ","pages":"Article 116811"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for conditional U-statistics analysis on hyperspheres for missing at random data in the presence of measurement error\",\"authors\":\"Salim Bouzebda,&nbsp;Nourelhouda Taachouche\",\"doi\":\"10.1016/j.cam.2025.116811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Missing data and measurement errors are prevalent challenges in modern statistical analyses, mainly when observations lie on complex structures like unit hyperspheres. To address these issues, we introduce a comprehensive framework for conditional <em>U</em>-statistics of general order, tailored explicitly for data missing at random and contaminated by measurement errors in such settings. We propose a novel deconvolution method for these conditional <em>U</em>-statistics and, for the first time, investigate its convergence rate and asymptotic distribution. Our unified approach establishes general asymptotic properties under broad model conditions, enabling us to derive asymptotic confidence intervals based on the estimator’s distribution. To demonstrate the practical significance of our framework, we provide new insights into the Kendall rank correlation coefficient and address discrimination problems.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 116811\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725003255\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003255","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

数据缺失和测量误差是现代统计分析中普遍存在的挑战,主要是在单位超球等复杂结构上进行观测时。为了解决这些问题,我们为一般顺序的条件u统计量引入了一个综合框架,该框架明确针对随机丢失的数据和在此类设置中受测量误差污染的数据进行了定制。针对这些条件u统计量,我们提出了一种新的反卷积方法,并首次研究了其收敛速度和渐近分布。我们的统一方法建立了广义模型条件下的一般渐近性质,使我们能够基于估计量的分布推导渐近置信区间。为了证明该框架的实际意义,我们对肯德尔等级相关系数提供了新的见解,并解决了歧视问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems for conditional U-statistics analysis on hyperspheres for missing at random data in the presence of measurement error
Missing data and measurement errors are prevalent challenges in modern statistical analyses, mainly when observations lie on complex structures like unit hyperspheres. To address these issues, we introduce a comprehensive framework for conditional U-statistics of general order, tailored explicitly for data missing at random and contaminated by measurement errors in such settings. We propose a novel deconvolution method for these conditional U-statistics and, for the first time, investigate its convergence rate and asymptotic distribution. Our unified approach establishes general asymptotic properties under broad model conditions, enabling us to derive asymptotic confidence intervals based on the estimator’s distribution. To demonstrate the practical significance of our framework, we provide new insights into the Kendall rank correlation coefficient and address discrimination problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信