协同的多尺度架构设计和异质界面工程实现了定制的电磁波吸收和多功能集成

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kai Nan , Yan Zhao , Boyang Wang , Sun Yin , Yulong Peng , Jing Huang , Shangqing Zhang , Tian Lei , Yan Wang , Zhi Yang
{"title":"协同的多尺度架构设计和异质界面工程实现了定制的电磁波吸收和多功能集成","authors":"Kai Nan ,&nbsp;Yan Zhao ,&nbsp;Boyang Wang ,&nbsp;Sun Yin ,&nbsp;Yulong Peng ,&nbsp;Jing Huang ,&nbsp;Shangqing Zhang ,&nbsp;Tian Lei ,&nbsp;Yan Wang ,&nbsp;Zhi Yang","doi":"10.1016/j.carbon.2025.120479","DOIUrl":null,"url":null,"abstract":"<div><div>The synergistic strategy of multi-scale structural design and heterogeneous interface engineering provides a feasible approach to modulate electromagnetic wave absorption (EMA) behavior and develop multi-functional integration. Herein, MOF-derived nanoarray-decorated volcanic rock-like carbon aerogel microspheres (CCAM@NiCo) have been successfully fabricated via Pickering emulsion technology combined with in situ heterogeneous epitaxial growth and annealing processes. The optimized architecture demonstrates an impressive low reflection loss (RL) of −61.7 dB at 2.2 mm thickness, achieving broadband absorption covering 7.1 GHz at an ultrathin 1.8 mm thickness. As confirmed by electromagnetic simulations, the exceptional impedance matching originates from triple structural optimizations: (i) “ensemble effects” between microspheres, (ii) surface roughness with tailored porosity, and (iii) gradient porous structures within individual microspheres. In addition to their EMA performance, the composite aerogel microspheres demonstrate an ultralow corrosion potential in simulated marine environments (3.5 wt% NaCl) and achieve rapid oil adsorption (approximately 12 times self-weight) within 0.5 s through magnetic responsiveness. This research addresses the dual limitations of conventional absorbers concerning environmental durability and functional singularity, establishing a new paradigm for developing intelligent materials that integrate electromagnetic stealth, corrosion resistance, and environmental remediation capabilities.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"243 ","pages":"Article 120479"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic multiscale architecture design and heterointerface engineering enable tailored electromagnetic wave absorption and multifunctional integration\",\"authors\":\"Kai Nan ,&nbsp;Yan Zhao ,&nbsp;Boyang Wang ,&nbsp;Sun Yin ,&nbsp;Yulong Peng ,&nbsp;Jing Huang ,&nbsp;Shangqing Zhang ,&nbsp;Tian Lei ,&nbsp;Yan Wang ,&nbsp;Zhi Yang\",\"doi\":\"10.1016/j.carbon.2025.120479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synergistic strategy of multi-scale structural design and heterogeneous interface engineering provides a feasible approach to modulate electromagnetic wave absorption (EMA) behavior and develop multi-functional integration. Herein, MOF-derived nanoarray-decorated volcanic rock-like carbon aerogel microspheres (CCAM@NiCo) have been successfully fabricated via Pickering emulsion technology combined with in situ heterogeneous epitaxial growth and annealing processes. The optimized architecture demonstrates an impressive low reflection loss (RL) of −61.7 dB at 2.2 mm thickness, achieving broadband absorption covering 7.1 GHz at an ultrathin 1.8 mm thickness. As confirmed by electromagnetic simulations, the exceptional impedance matching originates from triple structural optimizations: (i) “ensemble effects” between microspheres, (ii) surface roughness with tailored porosity, and (iii) gradient porous structures within individual microspheres. In addition to their EMA performance, the composite aerogel microspheres demonstrate an ultralow corrosion potential in simulated marine environments (3.5 wt% NaCl) and achieve rapid oil adsorption (approximately 12 times self-weight) within 0.5 s through magnetic responsiveness. This research addresses the dual limitations of conventional absorbers concerning environmental durability and functional singularity, establishing a new paradigm for developing intelligent materials that integrate electromagnetic stealth, corrosion resistance, and environmental remediation capabilities.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"243 \",\"pages\":\"Article 120479\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325004956\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325004956","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多尺度结构设计和异构界面工程协同策略为调制电磁波吸收行为和实现多功能集成提供了可行的途径。本文通过Pickering乳剂技术结合原位非均质外延生长和退火工艺,成功制备了mof衍生的纳米阵列装饰火山岩状碳气凝胶微球(CCAM@NiCo)。优化后的结构在2.2 mm厚度下具有- 61.7 dB的低反射损耗(RL),在1.8 mm超薄厚度下实现了覆盖7.1 GHz的宽带吸收。电磁模拟证实,这种特殊的阻抗匹配源于三重结构优化:(i)微球之间的“集合效应”,(ii)具有定制孔隙度的表面粗糙度,以及(iii)单个微球内的梯度多孔结构。除了具有EMA性能外,复合气凝胶微球在模拟海洋环境(3.5 wt% NaCl)中表现出超低的腐蚀潜力,并通过磁响应性在0.5 s内实现快速吸油(约为自重的12倍)。本研究解决了传统吸收材料在环境耐久性和功能单一性方面的双重局限性,为开发集电磁隐身、耐腐蚀和环境修复能力于一体的智能材料建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic multiscale architecture design and heterointerface engineering enable tailored electromagnetic wave absorption and multifunctional integration
The synergistic strategy of multi-scale structural design and heterogeneous interface engineering provides a feasible approach to modulate electromagnetic wave absorption (EMA) behavior and develop multi-functional integration. Herein, MOF-derived nanoarray-decorated volcanic rock-like carbon aerogel microspheres (CCAM@NiCo) have been successfully fabricated via Pickering emulsion technology combined with in situ heterogeneous epitaxial growth and annealing processes. The optimized architecture demonstrates an impressive low reflection loss (RL) of −61.7 dB at 2.2 mm thickness, achieving broadband absorption covering 7.1 GHz at an ultrathin 1.8 mm thickness. As confirmed by electromagnetic simulations, the exceptional impedance matching originates from triple structural optimizations: (i) “ensemble effects” between microspheres, (ii) surface roughness with tailored porosity, and (iii) gradient porous structures within individual microspheres. In addition to their EMA performance, the composite aerogel microspheres demonstrate an ultralow corrosion potential in simulated marine environments (3.5 wt% NaCl) and achieve rapid oil adsorption (approximately 12 times self-weight) within 0.5 s through magnetic responsiveness. This research addresses the dual limitations of conventional absorbers concerning environmental durability and functional singularity, establishing a new paradigm for developing intelligent materials that integrate electromagnetic stealth, corrosion resistance, and environmental remediation capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信