{"title":"可调控再生过程的定向多孔结构纤维素凝胶","authors":"Tongping Zhang , Cheng Cheng , Gang Wei , Xiaofang Zhang , Jianming Zhang","doi":"10.1016/j.ijbiomac.2025.144753","DOIUrl":null,"url":null,"abstract":"<div><div>The processing of raw cellulose materials to biomimetic regenerated cellulose materials with oriented porous structures is crucial for mimicking multiscale oriented porous structures of natural organisms. However, it remains challenging to understand how the cellulose/ionic liquid (IL) solution interacts with non-solvent water to regenerate and form oriented porous channels. Additionally, broadening the range of controllable pore sizes presents significant difficulties. This study explores the role of temperature in the controlled regeneration of cellulose chains using ILs solvents to create oriented porous structures. By manipulating the temperature of the regeneration bath in the range of 2–60 °C, we successfully regulate the self-assembly of cellulose molecules, achieving precise control over the sizes of the oriented pores. Our approach enables pore size tuning within a range of 0.05 to 1 mm, effectively addressing the challenge of limited pore size variability. This research highlights the critical influence of temperature on the phase separation process and its subsequent impact on the formation of oriented pores. This advancement opens new possibilities for designing sustainable, cellulose-based materials with tailored functionalities for advanced applications in environmental and biomedical engineering.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"316 ","pages":"Article 144753"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose gels with controllable oriented porous structure by regulating regeneration process\",\"authors\":\"Tongping Zhang , Cheng Cheng , Gang Wei , Xiaofang Zhang , Jianming Zhang\",\"doi\":\"10.1016/j.ijbiomac.2025.144753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The processing of raw cellulose materials to biomimetic regenerated cellulose materials with oriented porous structures is crucial for mimicking multiscale oriented porous structures of natural organisms. However, it remains challenging to understand how the cellulose/ionic liquid (IL) solution interacts with non-solvent water to regenerate and form oriented porous channels. Additionally, broadening the range of controllable pore sizes presents significant difficulties. This study explores the role of temperature in the controlled regeneration of cellulose chains using ILs solvents to create oriented porous structures. By manipulating the temperature of the regeneration bath in the range of 2–60 °C, we successfully regulate the self-assembly of cellulose molecules, achieving precise control over the sizes of the oriented pores. Our approach enables pore size tuning within a range of 0.05 to 1 mm, effectively addressing the challenge of limited pore size variability. This research highlights the critical influence of temperature on the phase separation process and its subsequent impact on the formation of oriented pores. This advancement opens new possibilities for designing sustainable, cellulose-based materials with tailored functionalities for advanced applications in environmental and biomedical engineering.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"316 \",\"pages\":\"Article 144753\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014181302505305X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014181302505305X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cellulose gels with controllable oriented porous structure by regulating regeneration process
The processing of raw cellulose materials to biomimetic regenerated cellulose materials with oriented porous structures is crucial for mimicking multiscale oriented porous structures of natural organisms. However, it remains challenging to understand how the cellulose/ionic liquid (IL) solution interacts with non-solvent water to regenerate and form oriented porous channels. Additionally, broadening the range of controllable pore sizes presents significant difficulties. This study explores the role of temperature in the controlled regeneration of cellulose chains using ILs solvents to create oriented porous structures. By manipulating the temperature of the regeneration bath in the range of 2–60 °C, we successfully regulate the self-assembly of cellulose molecules, achieving precise control over the sizes of the oriented pores. Our approach enables pore size tuning within a range of 0.05 to 1 mm, effectively addressing the challenge of limited pore size variability. This research highlights the critical influence of temperature on the phase separation process and its subsequent impact on the formation of oriented pores. This advancement opens new possibilities for designing sustainable, cellulose-based materials with tailored functionalities for advanced applications in environmental and biomedical engineering.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.