Zenan Zhou , Zhichen Chen , Yingjie Zhang , Tian Lu , Xianghua Lu
{"title":"社交媒体与金融科技平台:网络情绪如何支持信用风险决策?","authors":"Zenan Zhou , Zhichen Chen , Yingjie Zhang , Tian Lu , Xianghua Lu","doi":"10.1016/j.dss.2025.114471","DOIUrl":null,"url":null,"abstract":"<div><div>As emerging FinTech platforms face pressure in efficiently managing credit risk, the human emotional spectrum of FinTech platform borrowers within social media becomes a potential source for gaining insight into and evaluating their financial behaviors. Collaborating with an Asian FinTech platform, we investigate the impact of social media emotions on a platform’s loan-approval decisions and repayment-reminder interventions before due dates. We demonstrate that anger at the pre-approval stage has a U-shaped relationship with platform borrowers’ default probability. We reveal what we call “<em>a bright side of anger</em>” with respect to curbing financial credit risk: moderate intensity of anger at the pre-approval stage suggests a lower loan default probability. We also find that the average happiness tendency of platform delinquent borrowers’ at the pre-maturity stage becomes informative and valuable, as it shows a U-shaped relationship with loan default; as for anger, it does not work therein. Furthermore, our field experiment indicates that a positive-expectation reminder is useful for prompting repayment when delinquent borrowers are in strong emotional intensities, regardless of anger or happiness. However, a negative-consequence reminder results in a higher default probability for delinquent borrowers who maintain high immediate happiness before the loan maturity dates. We draw on the classical appraisal theory of emotions and the feelings-as-information theory to interpret our findings. We offer non-trivial theoretical and practical implications to support FinTech platform credit risk decision-making by investigating the value of social media emotions and advocating for cross-functional coordination between debt approval and debt collection departments.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"195 ","pages":"Article 114471"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social media meets FinTech platforms: How do online emotions support credit risk decision-making?\",\"authors\":\"Zenan Zhou , Zhichen Chen , Yingjie Zhang , Tian Lu , Xianghua Lu\",\"doi\":\"10.1016/j.dss.2025.114471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As emerging FinTech platforms face pressure in efficiently managing credit risk, the human emotional spectrum of FinTech platform borrowers within social media becomes a potential source for gaining insight into and evaluating their financial behaviors. Collaborating with an Asian FinTech platform, we investigate the impact of social media emotions on a platform’s loan-approval decisions and repayment-reminder interventions before due dates. We demonstrate that anger at the pre-approval stage has a U-shaped relationship with platform borrowers’ default probability. We reveal what we call “<em>a bright side of anger</em>” with respect to curbing financial credit risk: moderate intensity of anger at the pre-approval stage suggests a lower loan default probability. We also find that the average happiness tendency of platform delinquent borrowers’ at the pre-maturity stage becomes informative and valuable, as it shows a U-shaped relationship with loan default; as for anger, it does not work therein. Furthermore, our field experiment indicates that a positive-expectation reminder is useful for prompting repayment when delinquent borrowers are in strong emotional intensities, regardless of anger or happiness. However, a negative-consequence reminder results in a higher default probability for delinquent borrowers who maintain high immediate happiness before the loan maturity dates. We draw on the classical appraisal theory of emotions and the feelings-as-information theory to interpret our findings. We offer non-trivial theoretical and practical implications to support FinTech platform credit risk decision-making by investigating the value of social media emotions and advocating for cross-functional coordination between debt approval and debt collection departments.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"195 \",\"pages\":\"Article 114471\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923625000727\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000727","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Social media meets FinTech platforms: How do online emotions support credit risk decision-making?
As emerging FinTech platforms face pressure in efficiently managing credit risk, the human emotional spectrum of FinTech platform borrowers within social media becomes a potential source for gaining insight into and evaluating their financial behaviors. Collaborating with an Asian FinTech platform, we investigate the impact of social media emotions on a platform’s loan-approval decisions and repayment-reminder interventions before due dates. We demonstrate that anger at the pre-approval stage has a U-shaped relationship with platform borrowers’ default probability. We reveal what we call “a bright side of anger” with respect to curbing financial credit risk: moderate intensity of anger at the pre-approval stage suggests a lower loan default probability. We also find that the average happiness tendency of platform delinquent borrowers’ at the pre-maturity stage becomes informative and valuable, as it shows a U-shaped relationship with loan default; as for anger, it does not work therein. Furthermore, our field experiment indicates that a positive-expectation reminder is useful for prompting repayment when delinquent borrowers are in strong emotional intensities, regardless of anger or happiness. However, a negative-consequence reminder results in a higher default probability for delinquent borrowers who maintain high immediate happiness before the loan maturity dates. We draw on the classical appraisal theory of emotions and the feelings-as-information theory to interpret our findings. We offer non-trivial theoretical and practical implications to support FinTech platform credit risk decision-making by investigating the value of social media emotions and advocating for cross-functional coordination between debt approval and debt collection departments.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).