重载列车时滞辅助机制及自适应LSTM混合制动模型

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qiang Liu , Kexuan Xu , Yating Fu , Jiang Liu , Ling Liu
{"title":"重载列车时滞辅助机制及自适应LSTM混合制动模型","authors":"Qiang Liu ,&nbsp;Kexuan Xu ,&nbsp;Yating Fu ,&nbsp;Jiang Liu ,&nbsp;Ling Liu","doi":"10.1016/j.conengprac.2025.106392","DOIUrl":null,"url":null,"abstract":"<div><div>The train braking model (TBM) that describes the dynamic relations of operation speed, mileage, and control force is essential for achieving stable operation and precise stopping of heavy haul trains (HHTs). However, it is difficult to establish the TBM of HHTs due to complex characteristics: (i) the long body and air braking process of the HHTs may lead to unexpected time-delays of control force; and (ii) there are significant unmodeled dynamics caused by rough tracks and external poor environment. Traditional TBM does not take into account the unmodeled dynamics and time-delays caused by air transmission during braking. To address these issues, this study proposes a data mechanism hybrid modeling strategy, which incorporates a braking time-delay assisted mechanism model and an adaptive long and short-term memory (LSTM) model. A new Bayesian optimization based time-delay estimation method is first proposed to determine unknown time-delays of each carriage and the estimated time-delays are incorporated to generate the multi-point-mass kinetic mechanism model. Moreover, the error of the mechanism-driven model is adaptively compensated by a sliding window LSTM model to conduct the unmodeled dynamics. The effectiveness of the proposed method is demonstrated using the field data.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"163 ","pages":"Article 106392"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-delay assisted mechanism and adaptive LSTM hybrid train braking model of heavy haul trains\",\"authors\":\"Qiang Liu ,&nbsp;Kexuan Xu ,&nbsp;Yating Fu ,&nbsp;Jiang Liu ,&nbsp;Ling Liu\",\"doi\":\"10.1016/j.conengprac.2025.106392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The train braking model (TBM) that describes the dynamic relations of operation speed, mileage, and control force is essential for achieving stable operation and precise stopping of heavy haul trains (HHTs). However, it is difficult to establish the TBM of HHTs due to complex characteristics: (i) the long body and air braking process of the HHTs may lead to unexpected time-delays of control force; and (ii) there are significant unmodeled dynamics caused by rough tracks and external poor environment. Traditional TBM does not take into account the unmodeled dynamics and time-delays caused by air transmission during braking. To address these issues, this study proposes a data mechanism hybrid modeling strategy, which incorporates a braking time-delay assisted mechanism model and an adaptive long and short-term memory (LSTM) model. A new Bayesian optimization based time-delay estimation method is first proposed to determine unknown time-delays of each carriage and the estimated time-delays are incorporated to generate the multi-point-mass kinetic mechanism model. Moreover, the error of the mechanism-driven model is adaptively compensated by a sliding window LSTM model to conduct the unmodeled dynamics. The effectiveness of the proposed method is demonstrated using the field data.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"163 \",\"pages\":\"Article 106392\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066125001558\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125001558","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

列车制动模型是实现重载列车稳定运行和精确停车的关键,该模型描述了重载列车运行速度、行驶里程和控制力之间的动态关系。然而,由于高温高温隧道的复杂特性,其TBM的建立难度较大:(1)高温高温隧道的长车身和空气制动过程可能导致意想不到的控制力时滞;(ii)粗糙的轨迹和外部恶劣的环境导致了显著的未建模动力学。传统的TBM没有考虑未建模的动力学和制动过程中空气传输引起的时滞。为了解决这些问题,本研究提出了一种数据机制混合建模策略,该策略结合了制动时滞辅助机制模型和自适应长短期记忆(LSTM)模型。首先提出了一种新的基于贝叶斯优化的时延估计方法,确定各车厢的未知时延,并将估计的时延合并到多点质量动力学模型中。此外,通过滑动窗口LSTM模型自适应补偿机构驱动模型的误差,以进行未建模的动力学。现场数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-delay assisted mechanism and adaptive LSTM hybrid train braking model of heavy haul trains
The train braking model (TBM) that describes the dynamic relations of operation speed, mileage, and control force is essential for achieving stable operation and precise stopping of heavy haul trains (HHTs). However, it is difficult to establish the TBM of HHTs due to complex characteristics: (i) the long body and air braking process of the HHTs may lead to unexpected time-delays of control force; and (ii) there are significant unmodeled dynamics caused by rough tracks and external poor environment. Traditional TBM does not take into account the unmodeled dynamics and time-delays caused by air transmission during braking. To address these issues, this study proposes a data mechanism hybrid modeling strategy, which incorporates a braking time-delay assisted mechanism model and an adaptive long and short-term memory (LSTM) model. A new Bayesian optimization based time-delay estimation method is first proposed to determine unknown time-delays of each carriage and the estimated time-delays are incorporated to generate the multi-point-mass kinetic mechanism model. Moreover, the error of the mechanism-driven model is adaptively compensated by a sliding window LSTM model to conduct the unmodeled dynamics. The effectiveness of the proposed method is demonstrated using the field data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信