基于深度学习的光伏组件户外电致发光图像鲁棒去噪方法

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Yun Li , Brendan Wright , Rodrigo Del Prado Santamaria , Grace Liu , Ziv Hameiri
{"title":"基于深度学习的光伏组件户外电致发光图像鲁棒去噪方法","authors":"Yun Li ,&nbsp;Brendan Wright ,&nbsp;Rodrigo Del Prado Santamaria ,&nbsp;Grace Liu ,&nbsp;Ziv Hameiri","doi":"10.1016/j.solmat.2025.113750","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel deep learning-based approach for denoising photovoltaic (PV) module luminescence images, addressing the critical need to enhance image quality in outdoor inspection imaging. A simplified ResNet-based architecture, termed SimpleResNet, was developed and evaluated against conventional denoising techniques. The proposed method demonstrates superior performance in both quantitative metrics and qualitative visual assessments, particularly in preserving the fine details and structural integrity of PV module images. It is significantly faster than conventional techniques and, therefore, highly suitable for high-throughput applications. A comprehensive preprocessing pipeline incorporating perspective distortion correction, denoising, and sharpness enhancement is implemented to address real-world outdoor imaging challenges. The pipeline's effectiveness has been validated using actual outdoor electroluminescence images, exhibiting consistent performance across diverse module types and lighting conditions. These developed capabilities contribute to enhancing the accuracy and efficiency of automated inspection systems for utility-scale PV plants.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113750"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust denoising methodology for outdoor electroluminescence images of photovoltaic modules using deep learning\",\"authors\":\"Yun Li ,&nbsp;Brendan Wright ,&nbsp;Rodrigo Del Prado Santamaria ,&nbsp;Grace Liu ,&nbsp;Ziv Hameiri\",\"doi\":\"10.1016/j.solmat.2025.113750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel deep learning-based approach for denoising photovoltaic (PV) module luminescence images, addressing the critical need to enhance image quality in outdoor inspection imaging. A simplified ResNet-based architecture, termed SimpleResNet, was developed and evaluated against conventional denoising techniques. The proposed method demonstrates superior performance in both quantitative metrics and qualitative visual assessments, particularly in preserving the fine details and structural integrity of PV module images. It is significantly faster than conventional techniques and, therefore, highly suitable for high-throughput applications. A comprehensive preprocessing pipeline incorporating perspective distortion correction, denoising, and sharpness enhancement is implemented to address real-world outdoor imaging challenges. The pipeline's effectiveness has been validated using actual outdoor electroluminescence images, exhibiting consistent performance across diverse module types and lighting conditions. These developed capabilities contribute to enhancing the accuracy and efficiency of automated inspection systems for utility-scale PV plants.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"292 \",\"pages\":\"Article 113750\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825003514\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003514","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于深度学习的新型光伏(PV)模块发光图像去噪方法,解决了户外检测成像中提高图像质量的关键需求。开发了一种简化的基于resnet的架构,称为SimpleResNet,并对传统的去噪技术进行了评估。所提出的方法在定量度量和定性视觉评估方面都表现出优异的性能,特别是在保留PV组件图像的精细细节和结构完整性方面。它比传统技术快得多,因此非常适合高通量应用。一个综合的预处理管道,包括透视失真校正,去噪和清晰度增强,以解决现实世界的户外成像挑战。管道的有效性已经通过实际的室外电致发光图像进行了验证,在不同模块类型和照明条件下表现出一致的性能。这些已开发的功能有助于提高公用事业规模光伏电站自动检测系统的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust denoising methodology for outdoor electroluminescence images of photovoltaic modules using deep learning
This study presents a novel deep learning-based approach for denoising photovoltaic (PV) module luminescence images, addressing the critical need to enhance image quality in outdoor inspection imaging. A simplified ResNet-based architecture, termed SimpleResNet, was developed and evaluated against conventional denoising techniques. The proposed method demonstrates superior performance in both quantitative metrics and qualitative visual assessments, particularly in preserving the fine details and structural integrity of PV module images. It is significantly faster than conventional techniques and, therefore, highly suitable for high-throughput applications. A comprehensive preprocessing pipeline incorporating perspective distortion correction, denoising, and sharpness enhancement is implemented to address real-world outdoor imaging challenges. The pipeline's effectiveness has been validated using actual outdoor electroluminescence images, exhibiting consistent performance across diverse module types and lighting conditions. These developed capabilities contribute to enhancing the accuracy and efficiency of automated inspection systems for utility-scale PV plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信