{"title":"维罗的拼接和带符号的减a辨别式","authors":"Weixun Deng , J. Maurice Rojas , Máté L. Telek","doi":"10.1016/j.jsc.2025.102462","DOIUrl":null,"url":null,"abstract":"<div><div>Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102462"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viro's patchworking and the signed reduced A-discriminant\",\"authors\":\"Weixun Deng , J. Maurice Rojas , Máté L. Telek\",\"doi\":\"10.1016/j.jsc.2025.102462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102462\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000446\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000446","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Viro's patchworking and the signed reduced A-discriminant
Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.