维罗的拼接和带符号的减a辨别式

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Weixun Deng , J. Maurice Rojas , Máté L. Telek
{"title":"维罗的拼接和带符号的减a辨别式","authors":"Weixun Deng ,&nbsp;J. Maurice Rojas ,&nbsp;Máté L. Telek","doi":"10.1016/j.jsc.2025.102462","DOIUrl":null,"url":null,"abstract":"<div><div>Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102462"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viro's patchworking and the signed reduced A-discriminant\",\"authors\":\"Weixun Deng ,&nbsp;J. Maurice Rojas ,&nbsp;Máté L. Telek\",\"doi\":\"10.1016/j.jsc.2025.102462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102462\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000446\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000446","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

计算多变量多项式的正实零集的超曲面的同位素类型是实际代数几何中的一个具有挑战性的问题。我们专注于定义多项式具有组合限制指数向量和固定系数符号的情况,从而实现同位素类型的更快计算。特别是,Viro的拼接提供了一个多面体复合体,对于某些系数的选择,它具有与超表面相同的同位素类型。因此,我们提出了符号支持的性质,主要关注n-变量(n+3)-标称的情况,确保所有可能的同位素类型都可以通过拼凑获得。为了证明这一点,我们研究了有符号约简a判别式,并证明了当有符号支持满足某些组合条件时,它具有简单的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viro's patchworking and the signed reduced A-discriminant
Computing the isotopy type of a hypersurface, defined as the positive real zero set of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus on the case where the defining polynomial has combinatorially restricted exponent vectors and fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro's patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface, for certain choices of the coefficients. So we present properties of the signed support, focusing mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show that it has a simple structure if the signed support satisfies some combinatorial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信