固体和多孔钝体声学和气动声学模拟的体积惩罚方法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yannick Schubert, Ennes Sarradj, Mathias Lemke
{"title":"固体和多孔钝体声学和气动声学模拟的体积惩罚方法","authors":"Yannick Schubert,&nbsp;Ennes Sarradj,&nbsp;Mathias Lemke","doi":"10.1016/j.compfluid.2025.106683","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a computational method for acoustic and aeroacoustic simulations, using an immersed boundary method to model porous and solid objects. The approach uses a version of the Brinkman-type volume penalization method in combination with an effective volume to solve the full compressible Navier–Stokes equations employing finite-differences in the time domain. The provided framework enables multiple approaches for modeling objects, which are validated and systematically compared in terms of their associated error convergence. Utilizing the effective volume approach allows acoustic simulations to reach up to third-order convergence, enhancing the accuracy of wave propagation modeling. The methodology is demonstrated for the aeroacoustic sound generated by the flow around a porous-coated cylinder at a Reynolds number of <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>99000</mn></mrow></math></span>. A sensitivity study validates the expected importance of the modeling parameters. Results from the three-dimensional simulations involving two porous coatings with each two diameters exhibit good agreement with experimental data, confirming the validity and reliability of the approach.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"299 ","pages":"Article 106683"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A volume penalization method for acoustic and aeroacoustic simulation of solid and porous bluff bodies\",\"authors\":\"Yannick Schubert,&nbsp;Ennes Sarradj,&nbsp;Mathias Lemke\",\"doi\":\"10.1016/j.compfluid.2025.106683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a computational method for acoustic and aeroacoustic simulations, using an immersed boundary method to model porous and solid objects. The approach uses a version of the Brinkman-type volume penalization method in combination with an effective volume to solve the full compressible Navier–Stokes equations employing finite-differences in the time domain. The provided framework enables multiple approaches for modeling objects, which are validated and systematically compared in terms of their associated error convergence. Utilizing the effective volume approach allows acoustic simulations to reach up to third-order convergence, enhancing the accuracy of wave propagation modeling. The methodology is demonstrated for the aeroacoustic sound generated by the flow around a porous-coated cylinder at a Reynolds number of <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>99000</mn></mrow></math></span>. A sensitivity study validates the expected importance of the modeling parameters. Results from the three-dimensional simulations involving two porous coatings with each two diameters exhibit good agreement with experimental data, confirming the validity and reliability of the approach.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"299 \",\"pages\":\"Article 106683\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001434\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001434","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种声学和气动声学模拟的计算方法,使用浸入边界法来模拟多孔和固体物体。该方法将brinkman型体积惩罚方法与有效体积相结合,利用时域有限差分来求解完全可压缩的Navier-Stokes方程。所提供的框架支持多种建模对象的方法,并根据其相关的误差收敛对其进行验证和系统比较。利用有效体积法可以使声学模拟达到三阶收敛,提高了波传播建模的准确性。该方法对雷诺数Re=99000的多孔涂层圆柱体周围流动所产生的气动声进行了验证。敏感性研究验证了建模参数的预期重要性。两种孔径的多孔涂层三维模拟结果与实验数据吻合良好,验证了该方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A volume penalization method for acoustic and aeroacoustic simulation of solid and porous bluff bodies
This work presents a computational method for acoustic and aeroacoustic simulations, using an immersed boundary method to model porous and solid objects. The approach uses a version of the Brinkman-type volume penalization method in combination with an effective volume to solve the full compressible Navier–Stokes equations employing finite-differences in the time domain. The provided framework enables multiple approaches for modeling objects, which are validated and systematically compared in terms of their associated error convergence. Utilizing the effective volume approach allows acoustic simulations to reach up to third-order convergence, enhancing the accuracy of wave propagation modeling. The methodology is demonstrated for the aeroacoustic sound generated by the flow around a porous-coated cylinder at a Reynolds number of Re=99000. A sensitivity study validates the expected importance of the modeling parameters. Results from the three-dimensional simulations involving two porous coatings with each two diameters exhibit good agreement with experimental data, confirming the validity and reliability of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信